【网络科学1】无时延固定拓扑网络同步性例题证明

0绪论

本文主要参考书有:网络科学导论、现代控制理论、线性代数等。
主要解决的是《网络科学导论》一书中第11章网络同步与控制,课后习题11-1。如有证明任何问题欢迎指出并讨论,由于后面有矩阵运算,因此使用katex编辑会出现问题,因此部分公式使用截图。

1问题的提出

节点 i i i的初始状态演化方程为:
x ˙ i ( t ) = ∑ i = 1 N a i j ( x j ( t ) − x i ( t ) ) {\dot x_i}(t) = \sum\limits_{i = 1}^N {{a_{ij}}({x_j}(t) - {x_i}(t))} x˙i(t)=i=1Naij(xj(t)xi(t))
其中 i = 1 , 2 , 3 , 4... , N i = 1,2,3,4...,N i=1,2,3,4...,N

节点数为 N N N个,初始状态为任意给定,网络拓扑固定。证明:
lim ⁡ t → ∞ x i ( t ) = 1 N ∑ j = 1 N x j ( 0 ) \mathop {\lim }\limits_{t \to \infty } {x_i}(t) = {1 \over N}\sum\limits_{j = 1}^N {{x_j}(0)} tlimxi(t)=N1j=1Nxj(0)

2问题的解决(两步走)

步骤一:将 x i ( t ) {x_i}(t) xi(t)求转化为求系数% e − L t {e^{ - Lt}} eLt的极限:

由《网络科学导论》的366页11-4的结论可得
l i j = − a i j ( i ≠ j ) {l_{ij}} = - {a_{ij}}(i \ne j) lij=aij(i=j)
邻接矩阵行和即每个节点的度为:
l i i = ∑ j = 1 N a i j = k i {l_{ii}} = \sum\limits_{j = 1}^N {aij} = {k_i} lii=j=1Naij=ki
将节点度改写为对角线矩阵:
D = d i a g ( k 1 , k 2 , . . . , k N ) D = diag({k_1},{k_2},...,{k_N}) D=diag(k1,k2,...,kN)
其中矩阵A为邻接矩阵
A = ( a i j ) A = ({a_{ij}}) A=(aij)

其中 l i j {l_{ij}} lij是拉普拉斯矩阵 L L L的元素,即可得出 L = D − A L = D - A L=DA,所以题目中所给演化方程可以改写为关于拉普拉斯矩阵 L L L和的函数 x i ( t ) {x_i}(t) xi(t)结合实例理解):
X ˙ i ( t ) = − L X i ( t ) {\dot X_i}(t) = - L{X_i}(t) X˙i(t)=LXi(t)
而后使用一阶微分方程求解的方法:
两边积分
∫ d X i ( t ) X i ( t ) = ∫ − L d t \int {{{d{X_i}(t)} \over {{X_i}(t)}}} = \int { - Ldt} Xi(t)dXi(t)=Ldt
得到积分后的等式
ln ⁡ ( X i ( t ) ) = − L t + C \ln ({X_i}(t)) = - Lt + C ln(Xi(t))=Lt+C
两边取对数
X i ( t ) = e − L t ∗ X i ( 0 ) {X_i}(t) = {e^{ - Lt}}*{X_i}(0) Xi(t)=eLtXi(0)
而后问题就转换为求时间趋于无穷的系数极限即可:
lim ⁡ t → ∞ e − L t = ? \mathop {\lim }\limits_{t \to \infty } {e^{ - Lt}} = ? tlimeLt=?
步骤二:求解系数 e − L t {e^{ - Lt}} eLt的极限:
为解决这一问题首先在这陈述一下相关应用的定理:凯莱哈密顿定理

介绍凯莱哈密顿定理:
矩阵满足自身的特征方程,若阶矩阵的特征多项式为:
f ( λ ) = [ λ I − B ] = λ n + b n − 1 λ n − 1 + . . . + b 1 λ + b 0 (公式 1.1 ) f(\lambda ) = [\lambda I - B] = {\lambda ^n} + {b_{n - 1}}{\lambda ^{n - 1}} + ... + {b_1}\lambda + {b_0} (公式1.1) f(λ)=[λIB]=λn+bn1λn1+...+b1λ+b0(公式1.1
则有:
f ( B ) = B n + b n − 1 B n − 1 + . . . + b 1 B + b 0 I = 0 (公式 1.2 ) f(B) = {B^n} + {b_{n - 1}}{B^{n - 1}} + ... + {b_1}B + {b_0}I = 0(公式1.2) f(B)=Bn+bn1Bn1+...+b1B+b0I=0(公式1.2
矩阵指数 e B t {e^{Bt}} eBt可表示为 B B B ( n − 1 ) (n - 1) (n1)阶多项式:
e B t = ∑ m = 0 n − 1 b m ( t ) B m (公式 1.3 ) {e^{Bt}} = \sum\limits_{m = 0}^{n - 1} {{b_m}(t){B^m}} (公式1.3) eBt=m=0n1bm(t)Bm(公式1.3
凯莱哈密顿定理所得矩阵 B B B满足自己的特征方程,对于上式用 B B B的特征值 λ i , i = 1 , 2 , . . . , n {\lambda _i},i = 1,2,...,n λi,i=1,2,...,n代替 B B B后仍然满足:
e λ i t = ∑ j = 0 n − 1 b j ( t ) λ i j (公式 1.4 ) {e^{{\lambda _i}t}} = \sum\limits_{j = 0}^{n - 1} {{b_j}(t){\lambda _i}^j}(公式1.4) eλit=j=0n1bj(t)λij(公式1.4
利用该式可求得待定系数 a j ( t ) {a_j}(t) aj(t)
所得的 n n n元一次方程组为:公式1.5
在这里插入图片描述
这里插入一个定理:有关实对称阵的性质:
任何一个实对称矩阵都可以正交对角化,即存在一个正交矩阵 S S S S T = S − 1 {S^T} = {S^{ - 1}} ST=S1)使得 S − 1 B S = S T B S = Λ {S^{ - 1}}BS = {S^T}BS = \Lambda S1BS=STBS=Λ且正交矩阵 S S S的列向量不相关、可单位化。

正式求解:
由上述现代控制理论中求状态转移矩阵使用的凯莱哈密顿定理公式(1.5)可得:
在这里插入图片描述
由于系数矩阵行列式必不为0因此可逆,所以两边左乘系数矩阵的逆矩阵得:
在这里插入图片描述

再由公式(1.3)可得下述公式:
在这里插入图片描述
由于 B = − L B = - L B=L矩阵的特征值分别为 − λ 1 = 0 , − λ 2 , − λ 3 , . . . , − λ n < 0 - {\lambda _1} = 0, - {\lambda _2}, - {\lambda _3},..., - {\lambda _n} < 0 λ1=0,λ2,λ3,...,λn<0因此极限:
在这里插入图片描述

在这里插入图片描述
因此设矩阵 − L = B - L = B L=B转换为求 lim ⁡ t → ∞ e B t = ? \mathop {\lim }\limits_{t \to \infty } {e^{Bt}} = ? tlimeBt=?由矩阵B为实对称阵可将B矩阵转化为:
B = S Λ S T B = S\Lambda {S^T} B=SΛST
矩阵S为正交矩阵
S S T = I S{S^T} = I SST=I
将原极限转化为下式:
lim ⁡ t → ∞ e B t = I − B − . . . − B n − 1 = S ( I − Λ − Λ 2 − . . − Λ n − 1 ) S T \mathop {\lim }\limits_{t \to \infty } {e^{Bt}} = I - B - ... - {B^{{\rm{n}} - 1}} = S(I - \Lambda - {\Lambda ^2} - .. - {\Lambda ^{n - 1}}){S^T} tlimeBt=IB...Bn1=S(IΛΛ2..Λn1)ST
矩阵S为矩阵B的特征向量,因此第一列为
在这里插入图片描述
题中所求转换为:
在这里插入图片描述
其中:
在这里插入图片描述
在这里插入图片描述
其中:矩阵S为
在这里插入图片描述
将S带入上述矩阵乘法可得:
在这里插入图片描述在这里插入图片描述

将求得的系数矩阵带入步骤一中的最后结果可得:
在这里插入图片描述
命题得证

3结语

本篇博客仅为记录网络科学中有关网络同步的一个习题解法,网络科学导论一书中的课后习题没有明确给出解答,如有任何问题或者证明步骤有错,请指出交流。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值