目录
TT数鸭子:
问题描述
题目简述
这一天,TT因为疫情在家憋得难受,在云吸猫一小时后,TT决定去附近自家的山头游玩。
TT来到一个小湖边,看到了许多在湖边嬉戏的鸭子,TT顿生羡慕。此时他发现每一只鸭子都不 一样,或羽毛不同,或性格不同。TT在脑子里开了一个map<鸭子,整数> tong,把鸭子变成了 一些数字。现在他好奇,有多少只鸭子映射成的数的数位中不同的数字个数小于k。
输入/输出格式
输入格式:
输入第一行包含两个数n,k,表示鸭子的个数和题目要求的k。
接下来一行有n个数,
a
i
a_i
ai,每个数表示鸭子被TT映射之后的值。
输出格式:
输出一行,一个数,表示满足题目描述的鸭子的个数。
无行末空格
样例
输入样例:
6 5
123456789 9876543210 233 666 1 114514
输出样例:
4
问题分析
解题思路
还是比较简单的一道题,读取每一个数,用模10运算取出每一位数字,用整除10运算将数字每次右移一位,每次都判断该数字是否第一次出现过,如果是,则不同数字数加1。直到最后数字整除10后等于0为止。将结果和k比较即可。
参考代码
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
int main()
{
int n,k;
int c=0;
scanf("%d %d",&n,&k);
int sp[10];
memset(sp,0,sizeof(sp));
long long a;
for(int i=1;i<=n;i++)
{
scanf("%lld",&a);
int count=0;
while(a>0)
{
if(sp[a%10]==0)
{
count++;
sp[a%10]=1;
}
a=a/10;
}
if(count<k) c++;
printf("count=%d\n",count);
memset(sp,0,sizeof(sp));
}
printf("%d",c);
return 0;
}
心得体会
其实真的不难,但是当时做题的时候样例提示给出的k的范围最大是k<=1e6。这给我了一种我审错题的感觉。所以一开始没敢做这个题,怕有坑,最后才做了这道题。结果也只对了这一道题。。。审题还是要加强。
ZJM要抵御宇宙射线 :
问题描述
题目简述
据传,2020年是宇宙射线集中爆发的一年,这和神秘的宇宙狗脱不了干系!但是瑞神和东东忙 于正面对决宇宙狗,宇宙射线的抵御工作就落到了ZJM的身上。假设宇宙射线的发射点位于一个 平面,ZJM已经通过特殊手段获取了所有宇宙射线的发射点,他们的坐标都是整数。而ZJM要构 造一个保护罩,这个保护罩是一个圆形,中心位于一个宇宙射线的发射点上。同时,因为大部分 经费都拨给了瑞神,所以ZJM要节省经费,做一个最小面积的保护罩。当ZJM决定好之后,东东 来找ZJM一起对抗宇宙狗去了,所以ZJM把问题扔给了你~
输入/输出格式
输入格式:
输入 第一行一个正整数N,表示宇宙射线发射点的个数
接下来N行,每行两个整数X,Y,表示宇宙射线发射点的位置
输出格式:
输出包括两行
第一行输出保护罩的中心坐标x,y 用空格隔开
第二行输出保护罩半径的平方
(所有输出保留两位小数,如有多解,输出x较小的点,如扔有多解,输入y较小的点)
无行末空格
样例
输入样例:
5
0 0
0 1
1 0
0 -1
-1 0
输出样例:
0.00 0.00
1.00
问题分析
解题思路
由于这里规定了圆心必须在给出的点的一个上,那么这个问题就简化成了求解每一个点到其他所有点距离的最大值中的最小值,对应的点即为圆心。由于会出现多解问题,因此,需要实现重载<,以实现坐标之间的大小比较。最后输出注意两位小数。O(n^2)的算法完全适用于数据范围小于1e3的数据规模。
参考代码
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
class position
{
public:
float x,y;
double max_dist;
bool operator <(const position& p) const
{
if(x!=p.x) return x<p.x;
else return x<p.y;
}
};
position points[1010];
void init()
{
for(int i=0;i<1010;i++)
{
points[i].max_dist=0;
points[i].x=0;
points[i].y=0;
}
}
int main()
{
init();
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%f %f",&points[i].x,&points[i].y);
for(int j=i-1;j>=1;j--)
{
double t=pow((points[j].x-points[i].x),2)+pow((points[j].y-points[i].y),2);
if(t>points[i].max_dist) points[i].max_dist=t;
if(t>points[j].max_dist) points[j].max_dist=t;
}
}
double a=1e13;
int tag=0;
for(int i=1;i<=n;i++)
{
//printf("%.2f %.2f %.2f\n",points[i].x,points[i].y,points[i].max_dist);
if(points[i].max_dist<a)
{
tag=i;
a=points[i].max_dist;
}
else if(points[i].max_dist==a)
{
if(points[i]<points[tag])
{
tag=i;
}
else ;
}
else ;
}
//printf("OK!");
printf("%.2f %.2f\n",points[tag].x,points[tag].y);
printf("%.2lf",points[tag].max_dist);
return 0;
}
心得体会
这个题当时输出doulbe数据的时候不小心打成了%.2llf,导致输出错误。还是犯了非常低级的错误,以后要注意。
宇宙狗的危机:
问题描述
题目简述
在瑞神大战宇宙射线中我们了解到了宇宙狗的厉害之处,虽然宇宙狗凶神恶煞,但是宇宙狗有一 个很可爱的女朋友。
最近,他的女朋友得到了一些数,同时,她还很喜欢树,所以她打算把得到的数拼成一颗树。
这一天,她快拼完了,同时她和好友相约假期出去玩。贪吃的宇宙狗不小心把树的树枝都吃掉 了。所以恐惧包围了宇宙狗,他现在要恢复整棵树,但是它只知道这棵树是一颗二叉搜索树,同 时任意树边相连的两个节点的gcd(greatest common divisor)都超过1。
但是宇宙狗只会发射宇宙射线,他来请求你的帮助,问你能否帮他解决这个问题。
输入/输出格式
输入格式:
输入第一行一个t,表示数据组数。
对于每组数据,第一行输入一个n,表示数的个数
接下来一行有n个数
a
i
a_i
ai,输入保证是升序的。
输出格式:
每组数据输出一行,如果能够造出来满足题目描述的树,输出Yes,否则输出No。
无行末空格。
样例
输入样例:
1
6
3 6 9 18 36 108
输出样例:
Yes
问题分析
解题思路
仔细分析这个题可以发现是一个区间dp问题。首先可以发现,对于一个递增的数列来说,对于子序列[ai,aj]来说,如果其可以构成一个二叉搜索树,那么,其父节点一定是ai-1或者是aj+1。假如不是,拿不为ai-1作为例子,假如该数ak不为ai-1且比ai-1小,那么[ai,aj]一定为该结点的右孩子,同时[ak+1,ai-1]也一定为该结点的右孩子。这不满足二叉搜索树的定义。同理也可证明aj+1那一边。根据以上思路,我们需要判断的是[a1,an]这个序列是否满足条件,因此可以补上两个结点a0和an+1。这两个点一定可以和[a1,an]构成二叉搜索树,这样就可以使用以上思路判断了。因此开一个三维数组f[i][j][0/1],0和1分别对应父节点为ai-1和aj+1这两种情况。最后只要这两种情况中有一种可以就可以,否则不行。初始化的时候需要找到输入数据两两之间的最大公因数,如果大于1,则记录这两个数可以构成二叉搜索树的父子关系。从长度为1的区间开始转移。考察每个区间中的点ak,如果发现[ai,ak-1]和[ak+1,aj]是可以构成二叉搜索树的,那么就考察ai-1和ak以及ak和aj+1之间的最大公因数是否不为1,如果不为1,则修改f[i][j][0/1]为真,否则不修改。直到最后转移到长度为n的区间。
参考代码
#include <iostream>
#include <cstring>
int n;
int t;
int a[705];
int f[705][705][2],path[705][705];
int gcd(int a,int b){return b == 0 ? a : gcd(b,a%b);}
int main()
{
scanf("%d",&t);
for(int p=1;p<=t;p++)
{
memset(f,0,sizeof(f));
memset(path,0,sizeof(path));
memset(a,0,sizeof(a));
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
for(int i=1;i<=n;i++)
{
for(int j=i+1;j<=n;j++)
{
if(gcd(a[i],a[j])>1)
{
path[i][j]=1;
path[j][i]=1;
}
}
}
for(int i=1;i<=n;i++)
{
path[0][i]=1;
path[i][0]=1;
path[i][n+1]=1;
path[n+1][i]=1;
if(path[i][i-1]==1) f[i][i][0]=1;
if(path[i][i+1]==1) f[i][i][1]=1;
}
int j;
for(int length=1;length<n;length++)
{
for(int i=1;i+length<=n;i++)
{
j=i+length;
for(int k=i;k<=j;k++)
if((i==k||f[i][k-1][1]==1)&&(j==k||f[k+1][j][0]==1))
{
if(path[i-1][k]==1) f[i][j][0]=1;
if(path[j+1][k]==1) f[i][j][1]=1;
}
}
}
if(f[1][n][0]==1||f[1][n][1]==1) printf("Yes");
else printf("No");
if(p!=t) printf("\n");
}
return 0;
}
心得体会
这道题当时做的时候也想出来了,但是由于这个题输入的时候不是只有一组,所以不同组之间需要重新初始化f和path数组,这个在做题的时候忘记了,所以只得了10分。还是要注意做题的细节。