倍数问题
题意
给n个数,从里面选择3个数,保证这三个数和是K的倍数,选出和最大的一组数,输出这个和。
题解
背包问题的核心:一堆物品的组合问题的最优解。
这个题也是:组合问题的最优解。
这个问题的约束:有三个数、是K个倍数。K的倍数一般用模的余数来表示。
我们可以定义f[i] [j] [k] :表示前i个数,选择j个数,除K的模下余数为k的最大和,因为这个本质上:一堆物品的组合问题,就是背包问题,我们可以把这个优化掉一维。
接下来考虑和最大的问题:余数相同,和最大。我们可以把余数相同的数放在一起,取值最大的几个,这个题选3个,我们用vector+sort找到余数相同的数的集合,排序之后,注意有点余数个数小于3.
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define mst(s,_s) memset(s, _s, sizeof(s))
const double PI = acos(-1.0);
const double eps = 1e-6;
const int INF = 0x3f3f3f3f;
const int N = 1e6;
int T,n,m;
vector<int>a[N];
int f[4][N];
int cnt,nums[N];
int main() {
cin>>n>>m;
for(int i=1;i<=n;i++)
{
int x;
cin>>x;
a[x%m].push_back(x);
}
for(int i=0;i<m;i++)
{
if(a[i].size()<=3)
{
for(int j=0;j<a[i].size();j++)
nums[++cnt]=a[i][j];
}
else{
sort(a[i].begin(),a[i].end());
reverse(a[i].begin(),a[i].end());
for(int j=0;j<3;j++)
nums[++cnt]=a[i][j];
}
}
memset(f,-0x3f,sizeof f);
f[0][0]=0;
for(int i=1;i<=cnt;i++)
{
for(int j=3;j>=1;j--)
{
for(int k=0;k<m;k++)
f[j][k] = max(f[j][k], f[j-1][(k - nums[i] % m + m) % m] + nums[i]);
}
}
cout<<f[3][0]<<endl;
return 0;
}