左子右兄弟表达法的实现
struct node
{
int p,l,r;
}T[N];
使用【左子右兄弟表达法】必须引用初始化函数(为了显示节点在树中的地位):
//对所有节点初始化
void init(){
for(int i=0;i<n;i++){
T[i].P=T[i].l=T[i].r=NIL;
}
}
使用递归函数用数组储存节点的深度
void rec(int u,int p)
{
leve[u]=p;
if(T[u].r!=nl) rec(T[u].r,p);//右侧兄弟设置为相同深度
if(T[u].l!=nl) rec(T[u].l,p+1);//最左侧结点的深度设置为自己深度+1
}
表示子节点u的列表
bool flag=false;
for(int i=T[u].l;i!=nl;i=T[i].r){//一直往右边的结点找都是兄弟
if(flag) cout<<", ";
cout<<i;
flag=true;
}
相关题:ALDS1_5_A:Exhaustive Search
全部代码:
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+100;
const int nl=-1;
struct node
{
int p,l,r;
}T[N];
int leve[N];
void rec(int u,int p)
{
leve[u]=p;
if(T[u].r!=nl) rec(T[u].r,p);//右侧兄弟设置为相同深度
if(T[u].l!=nl) rec(T[u].l,p+1);//最左侧结点的深度设置为自己深度+1
}
void print(int u)
{
cout<<"node "<<u<<": ";
cout<<"parent = "<<T[u].p<<", ";
cout<<"depth = "<<leve[u]<<", ";
if(T[u].p==nl) cout<<"root, ";
else if(T[u].l==nl) cout<<"leaf, ";
else cout<<"internal node, ";
cout<<"[";
bool flag=false;
for(int i=T[u].l;i!=nl;i=T[i].r){//一直往右边的结点找都是兄弟
if(flag) cout<<", ";
cout<<i;
flag=true;
}
cout<<"]"<<endl;
}
int main()
{
int n;
cin>>n;
for(int i=0;i<n;i++) T[i].p=nl,T[i].l=nl,T[i].r=nl;
for(int i=0;i<n;i++){
int v,d;
cin>>v>>d;
int t;
for(int j=0;j<d;j++){
int c;
cin>>c;
if(j==0){
T[v].l=c;//表示的是孩子
}
else{
T[t].r=c;// 表示的是兄弟
}
t=c;
T[c].p=v;
}
}
int id;
for(int i=0;i<n;i++){
if(T[i].p==nl){
id=i;
break;
}
}
rec(id,0);
for(int i=0;i<n;i++){
print(i);
}
return 0;
}