常用图算法

SPFA算法

  SPFA算法在BellmanFord算法的基础上,通过队列的方式,减少了松弛的次数。队列中存储被成功松弛的点,如果邻接点成功松弛,则将其加入到队列中。
  下面为利用SPFA计算最长路的C++代码。

struct Edge {
	int to, w;
};
vector<Edge>G[maxn];
int dis[maxn];
bool vis[maxn];
void spfa(int s) {
	for (int i = 1; i <= n; i++) {
		dis[i] = -INT_MAX;
		vis[i] = false;
	}
	dis[s] = 0;
	vis[s] = true;
	q.push(s);
	while (!q.empty()) {
		int u = q.front(); q.pop();
		vis[u] = false;//释放首节点,因为这个节点可能下次用来松弛其他节点,重新入队
		for (auto e : G[u]) {
			if (dis[e.to] < dis[u] + e.w) {
				dis[e.to] = dis[u] + e.w;
				if (!vis[e.to]) {
					q.push(e.to);
					vis[e.to] = true;
				}
			}
		}
	}
}

  在while循环中,当弹出队首元素之后,一定要将vis[u]置为false。
  如果需要计算最短路,只需要修改初始化的dis的值为INT_MAX以及while循环中的松弛条件的<改为>。

差分约束系统

  求解差分约束系统的问题,最终都可以转换为图论中的单源最短路的问题。
  如果有不等式 xi-xj<=a, 则可以另xi=dis[i], xj=dis[j], a=w(i,j),则等价于dis[i]<=dis[j]+w(i,j),意味着从节点j到节点i连一条长度为a的有向边。如果令x1=0,则xi=dis[i]便是差分约束问题的一组解。
  利用最短路求解差分约束的关键点如下:
  1. 寻找带减号的不等式(如果满足xi/xj<=k, 则可通过取对数的方法进行转换)(有时候根据题目的条件列出来的不等式是关于和的不等式,可以通过构造前缀和的方法进行转换)
  2. 是否满足起始条件x1=0
  3. 如果有其它的显而易见的约束,如保证结果为正数,也需要建立约束
  4. 如果是求最小解,则构建>=的不等式并跑最长路。反之,构建<=的不等式并跑最短路(一般用spfa跑)

下面给出例题CSP201809-4 再卖菜

#include <bits/stdc++.h>
using namespace std;
#define maxn 310
struct Edge {
	int v, w;
};
vector<Edge>G[maxn];
void add(int u, int v, int w) {
	G[u].push_back({ v,w });
}
int n;
int dis[maxn];
bool vis[maxn];
int b[maxn];//记录第二天的菜价
/*s[i]=a[1]+...+a[i]*/
/*3b[i]<=s[i+1]-s[i-2]<=3b[i]+2*/
/*使用差分约束,spfa遍历最长路得到最小解*/
queue<int> q;
void spfa(int s) {
	for (int i = 1; i <= n; i++) {
		dis[i] = -INT_MAX;
		vis[i] = false;
	}
	dis[s] = 0;
	vis[s] = true;
	q.push(s);
	while (!q.empty()) {
		int u = q.front(); q.pop();
		vis[u] = false;//释放首节点,因为这个节点可能下次用来松弛其他节点,重新入队
		for (auto e : G[u]) {
			if (dis[e.v] < dis[u] + e.w) {
				dis[e.v] = dis[u] + e.w;
				if (!vis[e.v]) {
					q.push(e.v);
					vis[e.v] = true;
				}
			}
		}
	}
}

int main() {
	ios::sync_with_stdio(false);
	cin >> n;
	for (int i = 1; i <= n; i++) {
		int j;
		cin >> j;
		b[i] = j;
	}

	/*差分约束*/
	add(0, 2, 2 * b[1]);
	add(2, 0, -(2 * b[1] + 1));
	add(n - 2, n, 2 * b[n]);
	add(n, n - 2, -(2 * b[n] + 1));
	for (int i = 2; i <= n; i++) {
		add(i - 2, i + 1, 3 * b[i]);
		add(i + 1, i - 2, -(3 * b[i] + 2));
	}
	for (int i = 1; i <= n; i++) {
		add(i - 1, i, 1);//a[i]>0
	}
	spfa(0);
	for (int i = 1; i <= n; ++i) {
		cout << dis[i] - dis[i - 1] << " ";
	}
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值