图像分割常用算法总结

阈值分割

灰度值 的不同大小选择进行分割, 关键在于如何选择阈值的大小

缺点: 对噪声敏感,由于灰度化无法区分噪声,需要先进行去噪

常用算法: OSTU、最大熵法、自适应(局部阈值)

OSTU : 计算简单快速,不受图像亮度和对比度的影响

基于区域生长的分割

在这里插入图片描述

优点: 计算简单,可以快速分割具有相同特征的区域
缺点: 对噪声敏感,容易出现空洞
白色的无法划分成功
具体实现:
计算各个通道之间的距离, 大于阈值则视为同一个区域,
可选择对比周围几个点,四个点,横轴,纵轴,对角线 SAD
在这里插入图片描述

基于边缘的分割算法

常用的图像边缘检测算子有:Laplace算子、Sobel算子、Canny算子等。

基于图的分割

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东哥爱编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值