石子合并(区间DP模板题附带解析)

设有N堆石子排成一排,其编号为1,2,3,…,N。

每堆石子有一定的质量,可以用一个整数来描述,现在要将这N堆石子合并成为一堆。

每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。

例如有4堆石子分别为 1 3 5 2, 我们可以先合并1、2堆,代价为4,得到4 5 2, 又合并 1,2堆,代价为9,得到9 2 ,再合并得到11,总代价为4+9+11=24;

如果第二步是先合并2,3堆,则代价为7,得到4 7,最后一次合并代价为11,总代价为4+7+11=22。

问题是:找出一种合理的方法,使总的代价最小,输出最小代价。

输入格式
第一行一个数N表示石子的堆数N。

第二行N个数,表示每堆石子的质量(均不超过1000)。

输出格式
输出一个整数,表示最小代价。

数据范围
1≤N≤300
输入样例:
4
1 3 5 2
输出样例:
22
思路:

核心:最后一次合并一定是左边连续的一部分和右边连续的一部分进行合并

状态表示:f[i][j] 表示将 i 到 j 合并成一堆的方案的集合,属性 Min

状态计算:
(1) i<j时,f[i][j]=min(f[i][k]+f[k+1][j]+s[j]−s[i−1])(i≤k≤j−1)
(2) i=j 时, f[i][i]=0 (合并一堆石子代价为 0)

问题答案: f[1][n]

区间 DP 常用模版
所有的区间dp问题,第一维都是枚举区间长度,一般 len = 1 用来初始化,
枚举从 len = 2 开始,第二维枚举起点 i 
(右端点 j 自动获得,j = i + len - 1for (int i = 1; i <= n; i++) {
    dp[i][i] = 初始值
}
for (int len = 2; len <= n; len++)           //区间长度
    for (int i = 1; i + len - 1 <= n; i++) { //枚举起点
        int j = i + len - 1;                 //区间终点
      for (int k = i; k < j; k++) {        //枚举分割点,构造状态转移方程
     dp[i][j] = max(dp[i][j], dp[i][k] + dp[k + 1][j] + w[i][j]);
        }
    }


//区间DP写法
#include <iostream>

using namespace std;

const int N = 307;

int a[N], s[N];
int f[N][N];

int main() {
    int n;
    cin >> n;

    for (int i = 1; i <= n; i ++) {
        cin >> a[i];
        s[i] += s[i - 1] + a[i];
    }

    // 区间 DP 枚举套路:长度+左端点 
    for (int len = 1; len < n; len ++) { // len表示i和j堆下标的差值
        for (int i = 1; i + len <= n; i ++) {
            int j = i + len; // 自动得到右端点
            f[i][j] = 1e8;
            for (int k = i; k <= j - 1; k ++) { // 必须满足k + 1 <= j
                f[i][j] = min(f[i][j], f[i][k] + f[k + 1][j] + s[j] - s[i - 1]);
            }
        }
    }

    cout << f[1][n] << endl;


    return 0;
}

//记忆化搜索
#include <iostream>
#include <cstring>

using namespace std;

const int N = 307;

int a[N], s[N];
int f[N][N];

// 记忆化搜索:dp的记忆化递归实现
int dp(int i, int j) {
    if (i == j) return 0; // 判断边界
    int &v = f[i][j];

    if (v != -1) return v;

    v = 1e8;
    for (int k = i; k <= j - 1; k ++)
        v = min(v, dp(i, k) + dp(k + 1, j) + s[j] - s[i - 1]);

    return v;
}

int main() {
    int n;
    cin >> n;

    for (int i = 1; i <= n; i ++) {
        cin >> a[i];
        s[i] += s[i - 1] + a[i];
    }

    memset(f, -1, sizeof f);

    cout << dp(1, n) << endl;


    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小王子y

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值