通道可分离卷积 depth-wise separable convolution

通道可分离卷积

通道分离卷积,depthwise separable convolution,也叫深度可分离卷积,是MobileNet系列的主要特点,也是其发挥轻量级作用的主要因素。

通道可分离卷积分为逐通道卷积和逐点卷积。逐通道卷积,Depthwise Convolution,卷积核只有一层(c=1),输入特征的一个通道与一个卷积核相乘得到输出特征的一个通道。

逐点卷积就是1x1卷积,可以带来通道方向上的信息交流,并且改变输出特征的通道数。

一些博客:
https://zhuanlan.zhihu.com/p/92134485
https://blog.csdn.net/Chunfengyanyulove/article/details/91358187
https://zhuanlan.zhihu.com/p/323346888

正常卷积回顾

下图中输入特征为5x5,卷积核一共的weights数量为:3x3x3x4=108

在这里插入图片描述

通道可分离卷积

  1. 逐通道卷积 Depthwise Convolution

如上所述,一个卷积核负责一个通道,叠加得到最终的特征。

weights数为:3x3x3=27,是正常卷积的1/4

它的缺点是:无法改变输出特征的通道数,而且缺少通道&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值