通道可分离卷积
通道分离卷积,depthwise separable convolution,也叫深度可分离卷积,是MobileNet系列的主要特点,也是其发挥轻量级作用的主要因素。
通道可分离卷积分为逐通道卷积和逐点卷积。逐通道卷积,Depthwise Convolution,卷积核只有一层(c=1),输入特征的一个通道与一个卷积核相乘得到输出特征的一个通道。
逐点卷积就是1x1卷积,可以带来通道方向上的信息交流,并且改变输出特征的通道数。
一些博客:
https://zhuanlan.zhihu.com/p/92134485
https://blog.csdn.net/Chunfengyanyulove/article/details/91358187
https://zhuanlan.zhihu.com/p/323346888
正常卷积回顾
下图中输入特征为5x5,卷积核一共的weights数量为:3x3x3x4=108
通道可分离卷积
- 逐通道卷积 Depthwise Convolution
如上所述,一个卷积核负责一个通道,叠加得到最终的特征。
weights数为:3x3x3=27,是正常卷积的1/4
它的缺点是:无法改变输出特征的通道数,而且缺少通道&#x