训练集、验证集和测试集是机器学习中比较基本的概念。初次接触时,感觉验证集和测试集是同一个东西,都是用来检验分类模型的好坏,仔细比较学习后,才发现它两有本质区别。
训练集(Training set)
用来拟合模型,通过设置分类器的参数,训练分类模型。后续结合验证集作用时,会选出同一参数的不同取值,拟合出多个分类器。
验证集(Validation set)
通过训练集训练出多个模型后,为了能找出效果最佳的模型,使用各个模型对验证集数据进行预测,并记录模型准确率。选出效果最佳的模型所对应的参数,即用来调整模型参数。
测试集(Test set)
通过训练集和验证集得出最优模型后,使用测试集进行模型预测。用来衡量该最优模型的性能和分类能力。往往用测试集的判别效果来估计模型在实际使用时的泛化能力。
模型评估的方法有很多,中间会涉及到数据集D的不同划分方法。一般数据集D的划分比例是—— 训练集:验证集:测试集 (6:2:2)