2014-2019高教社杯题型总结
2014 本科组
A 嫦娥三号软着陆轨道设计与控制策略
嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。嫦娥三号在着陆准备轨道上的运行质量为2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m(见附件1)。
嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段(见附件2),要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。
根据上述的基本要求,请你们建立数学模型解决下面的问题:
(1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。
(2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。
(3)对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。
解题思路
模型类型:本题属于物理模型,使用基本物理知识解题
题目一
本小题要求确定嫦娥三号着陆准备轨道的近月点和远月点的位置及嫦娥三号相应的速度大小与方向。
对于嫦娥三号在近月点和远月点处的速度大小及方向,在近月点和远月点高度已知的情况下,可依据机械能守恒和角动量守恒定律求解得到,并与题给附件中的近月点制动速度对比验证。
对于近月点和远月点的位置,可以用点在月球表面投影点的经纬度及点的高度进行描述。近月点在月心坐标系的位置和软着陆轨道形态共同决定了着陆点的位置,由于着陆轨道的具体轨迹尚未确定,仅根据着陆点的位置并不能确定近月点和远月点的精确方位。因此,考虑能量消耗最小的基准上,可以通过设定以下理想状态对模型进行简化:
(1)假设嫦娥三号准备软着陆轨道沿月球经线绕行,软着陆过程近似于沿经线运动,运动过程中仅改变纬度大小。
(2)假设主减速阶段的水平路程近似为软着陆的水平路程。
由以上两条假设及查阅文献获取主减速阶段航程,并由此初步确定近月点和远月点的近似位置。当问题二中设计出了软着陆控制策略及着陆轨道后,通过求解在该控制策略下的水平路程,对近月点和远月点的位置进行修正,从而得到近月点和远月点的精确位置。
问题一模型
题目二
本小题要求确定嫦娥三号的着陆轨道以及在以燃料消耗、安全性等目标下,6 个阶段的最优控制策略。
对于控制策略的目标,由于不同着陆阶段的目的与末态约束不同,其控制目标也有所区别。在着陆准备轨道阶段,嫦娥三号在远月点从霍曼转移轨道变轨进入椭圆轨道。从安全性的角度考虑,为使变轨时间最短,采用推力最大策略进行变轨在主减速阶段,引入二维极坐标下的微分动力学方程来描述运动过程,该阶段控制目标是使燃耗最小,而该阶段主要使探测器减速,当主减速发动机的推力达到最大时,探测器的减速最快。因此可以通过固定推力大小为最大,寻找使燃耗最小的推力方向。
对于快速调整阶段,为通过主减速发动机使水平速度迅速减小为零,采用与水平速度反向的变推力作为控制策略,同时借助姿态发动机调节位姿至推力朝向向下;同时需要在速度和降落高度上满足相关约束条件。因此以最小燃耗为目标,建立非线性规划模型设计控制策略。
粗避障阶段和精避障阶段的控制策略相似,皆以着陆安全性为主要目标,适当考虑燃耗最小,可通过寻找着陆区域和着陆区控制策略两个方面对着陆过程进行设计。但精避障阶段在寻找着陆区域时,对落月点的安全性以及精确度要求显然更高。可通过分析嫦娥三号尺寸大小将悬停状态拍到的数字高程图区域网格化,将区域划分为若干网格,寻找符合着陆条件的危害性小并使平移距离尽量小的地区。选定地区后,通过直线移动使得能量消耗较小的控制策略进行控制。
对于缓速下降阶段,其控制时间较短,考虑视探测器质量不变以简化求解。在此假设下,问题就转化为求一使得探测器满足缓速下降至月面 4m 处速度为 0 约束的推力的简单动力学问题。
问题三
本小题要求对问题二中的控制策略及着陆轨道设计进行误差及灵敏度分析。对于误差,将其分为初始条件误差、可调节推力的延时误差及月球自转引起的误差三部分。对初始条件,从月球半径的选取、初始高度的不确定及初始速度的理想计算三方面进行系统误差讨论分析其对主减速阶段的各参量的影响;对推力延时系统误差,通过查阅控制频率及单步推力分辨率进行分析,发现其推力变动存在一定滞后延时性。对月球自转误差,结合近月点的经度误差进行分析说明。对于敏性,对嫦娥三号高度、径向速度及水平速度,通过推力,近月点高度,比冲的 $$5%变动进行灵敏度分析,并联系实际讨论其灵敏意义及稳定性。
B 创意平板折叠桌
某公司生产一种可折叠的桌子,桌面呈圆形,桌腿随着铰链的活动可以平摊成一张平板(如图1-2所示)。桌腿由若干根木条组成,分成两组,每组各用一根钢筋将木条连接,钢筋两端分别固定在桌腿各组最外侧的两根木条上,并且沿木条有空槽以保证滑动的自由度(见图3)。桌子外形由直纹曲面构成,造型美观。附件视频展示了折叠桌的动态变化过程。
试建立数学模型讨论下列问题:
-
给定长方形平板尺寸为120 cm × 50 cm × 3 cm,每根木条宽2.5 cm,连接桌腿木条的钢筋固定在桌腿最外侧木条的中心位置,折叠后桌子的高度为53 cm。试建立模型描述此折叠桌的动态变化过程,在此基础上给出此折叠桌的设计加工参数(例如,桌腿木条开槽的长度等)和桌脚边缘线(图4中红色曲线)的数学描述。
-
折叠桌的设计应做到产品稳固性好、加工方便、用材最少。对于任意给定的折叠桌高度和圆形桌面直径的设计要求,讨论长方形平板材料和折叠桌的最优设计加工参数,例如,平板尺寸、钢筋位置、开槽长度等。对于桌高70 cm,桌面直径80 cm的情形,确定最优设计加工参数。
-
公司计划开发一种折叠桌设计软件,根据客户任意设定的折叠桌高度、桌面边缘线的形状大小和桌脚边缘线的大致形状,给出所需平板材料的形状尺寸和切实可行的最优设计加工参数,使得生产的折叠桌尽可能接近客户所期望的形状。你们团队的任务是帮助给出这一软件设计的数学模型,并根据所建立的模型给出几个你们自己设计的创意平板折叠桌。要求给出相应的设计加工参数,画出至少8张动态变化过程的示意图。
基本分析
本题属于物理结构题,主要分析创意平板桌的结构特征,使用数学模型表示折叠桌在使用过程中的位置变化过程,以及平板桌的加工参数。问题三则是问题一问题二的一个综合变形,其实是在问题一以及问题二的基础上进行变形。
问题分析
于问题一,首先建立空间直角坐标系,考虑确定直纹曲面的参数方程,引入参数,u v ,其中u 为直纹曲面上任一点还原到木板状态下到 x 轴的距离, v 为任一点到平面yOz 的距离.由几何关系可知:OP,分别根据空间几何关系求解OC 和CP,用来表示OP,即可求得直纹曲面的参数方程.用木条作为桌面部分的长度l 及桌脚长度可确定铰链位置(即每根木条的弯折点). 木板状态时,钢筋位于各木条一半的中点位置,此时钢钉刚好位于槽的上界(以桌子状态下,槽靠近坐标原点的边界叫上界),桌子状态时,铁钉位于槽的下界,两者的差值即为空槽长度. 当u 取木板长度的一半时即为桌角边缘线的方程. 对于折叠桌的动态变化过程,可用 Matlab 绘制图像,编程过程可先求出桌面上各铰链的坐标,并在坐标系将铰链坐标点顺次相连,即可作出桌面曲线. 然后求钢筋的坐标,连接对应的铰链坐标点和钢筋坐标点. 最后找桌腿底端坐标点,连接对应的钢筋坐标点和桌腿底端坐标点,就得到了桌面图像.
对于问题二,考虑用料最省、加工方便作为目标,以各空槽长度不能超出木条、桌子在弯折过程中桌腿边缘不能相交、桌子的稳固性作为约束条件,利用 Matlab 编程,求得折叠桌弯折角θ ,钢筋的初始位置到木条末端的距离 s ,木板的长度 L ,并将结果代入问题一中相应模型,即得长方形木板长度和折叠桌的最有设计加工参数…
对于问题三,先将圆形折叠桌的侧面直纹曲面和桌脚边缘线的方程推广到一般形状桌面和一般形状板材,然后利用多目标优化模型设计了两种特殊形状的折叠桌:可以考虑非长方形板材的正方形折叠桌和 8 字形折叠桌. 通过改变木条的旋转角度分别画出了这两种形状折叠桌的动态变化示意图,并给出了具体的设计加工参数,方法类同问题二.
2015本科组
A 太阳影子定位
如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。
-
建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。
-
根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。
-
根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。将你们的模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。
-
附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直杆的高度为2米。请建立确定视频拍摄地点的数学模型,并应用你们的模型给出若干个可能的拍摄地点。
如果拍摄日期未知,你能否根据视频确定出拍摄地点与日期?
问题分析及问题模型
太阳影子定位技术是对视频数据分析的一种有效方法。通过对视频进行图像处理,可得出各个时刻直杆的太阳影子顶点坐标。难点在于通过所得出的坐标数据找出视频拍摄的地点和日期。需要我们建立在地球不同地点(经纬度)、不同日期时刻下,描述物体影子长度变化规律的数学模型,进而基于所建模型给出视频拍摄日期和可能的地点。
2.1 影子长度变化规律的分析
建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并在给定地理位置、区时时间段、直杆高度的情况下绘制出直杆的太阳影子长度的变化曲线。本题中因变量为影子的长度,自变量为所处地理位置的经纬度、所观测的日期、时间段。考虑通过查找文献资料,找出影子长度与每个参数间的关系,通过机理分析来确定其与这些参数之间的定量解析式,依据关系式来进一步分析影子长度关于参数变化的普遍规律。已给定部分参数(经纬度为北纬 39 度 54 分 26 秒,东经 116 度 23 分 29 秒、观测日期为 2015 年 10 月 22 日)时,我们可将解析式简化,得出影子长度与具体时间段(北京时间 9:00-15:00 之间)之间的关系,进而由函数关系,利用 matlab绘制出杆高为 3m 的直杆的太阳影子长度随时间的变化曲线。
2.2 依据影子顶点坐标来确定直杆所处地点的分析
问题 2 要求根据直杆在水平地面上太阳影子的顶点坐标给出其所处的可能地点。可将其视为一个优化问题,核心在于目标函数的确定。在已知测量日期和时间的前提下,在全球范围内找出较优的与直杆影子坐标相符合的地点(经纬度坐标)。首先从优化目标入手,对于直杆影子的确定,我们可将题目中所给附件中所给出的影子坐标转化为其它条件来利用。每个时间点的影子坐标都对应于一个影长,每 3 分钟的时间间隔也对应于一个影子方向的变化角度,这两个条件可同时利用来确定影子的坐标。另一方面,地球上每个位置(经纬度坐标)、日期、时间段的太阳影子也会对应也可对应出固定高度直杆的影长及影子方向的变化角度。使每个地点的影子长度和影子方向变化角度与实测值间的差值达到最小,则该位置即为可能的直杆所处地点。对于搜索可能符合地点的方法,考虑通过多次搜索来减小搜索范围,逐步限制条件,进而找到较优解。
2.3 依据影子顶点坐标来确定直杆所处地点和日期的分析
问题 3 与问题 2 的不同之处在于直杆所处的日期也是未知的,这在一定程度上增加了优化模型求解的难度。该题模型的建立可建立在问题 2 模型的基础之上,难点在于:由于日期没有给出,使得优化模型的决策变量可能增加了一个。但优化目标的分析仍可与问题2 中相同。从另一个角度来说,在搜索可能符合的地点和日期(即模型求解)时,不但要给出经纬度、杆长的搜索范围和步长,而且需给出日期的范围和步长(再套一层循环)。同样考虑通过多次搜索来减小搜索范围,逐步限制条件,进而找出较优解。
2.4 确定视频拍摄地点与日期的分析
视频中的直杆影子变化只是平面下的图像,它与实际空间中物体的位置等有很大不同。考虑运用计算机图像处理中透视和投影的相关知识进行分析。难点在于如何将视频图像中直杆影子的顶点坐标转化为实际的顶点坐标,即透视与投影知识的灵活运用。首先,需要对题目中所给附件视频进行处理。每隔一定时间(例如 3 分钟)取出视频中直杆影子的顶点坐标,用来对其进行转化。这样,便将问题简化至第2 问的程度。所以仍考虑建立优化模型,通过多次搜索来减小搜索范围,逐步限制条件,进而找到视频拍摄的可能地点和日期。
B “互联网+”时代的出租车资源配置
出租车是市民出行的重要交通工具之一,“打车难”是人们关注的一个社会热点问题。随着“互联网+”时代的到来,有多家公司依托移动互联网建立了打车软件服务平台,实现了乘客与出租车司机之间的信息互通,同时推出了多种出租车的补贴方案。
请你们搜集相关数据,建立数学模型研究如下问题:
(1) 试建立合理的指标,并分析不同时空出租车资源的“供求匹配”程度。
(2) 分析各公司的出租车补贴方案是否对“缓解打车难”有帮助?
(3) 如果要创建一个新的打车软件服务平台,你们将设计什么样的补贴方案,并论证其合理性。
问题分析及问题模型
问题一
问题一要求建立合理的指标以分析不同时空出租车资源的“供求匹配”程度,我们可以选取里程利用率和供求比率两个指标。针对里程利用率这一指标,可以从供给角度和需求角度分别测量出租车的载客里程,使二者相等,从而得到里程利用率的理想值 K ∗ K^{*} K∗,针对供求比率这一指标,我们可依据供求关系将区域分为三个部分:供大于求部分,供等于求部分,供小于求部分,利用供给比率的相关定义,求得供求比率的理想值 η ∗ \eta^{*} η∗,将两个指标抽象为二维空间的坐标,将里程利用率 K K K和供求比率 η \eta η转化点 Q ( K , η ) Q(K,\eta) Q(K,η),通过归一化处理后,计算实际点与平衡点距离。距离越大,供求匹配度越低;距离越小,供求匹配度越高;距离为零,此时达到平衡点,供求完全匹配。
问题二
问题三
问题三要求我们设计补贴方案并论证合理性,我们可以从乘客和司机两个方面实施补贴方案。
针对乘客方面,可以采用积分奖励,红包抽取等激励补贴政策;针对司机方面,我们将地区划分为九个部分,利用每辆车的车单数与所获补贴之间的比例关系列出等式,从时间和空间两个角度对模型进行求解,从而得出结果,并验证合理性。
2016本科组
A 系泊系统的设计
近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。钢桶上接第4节钢管,下接电焊锚链。钢桶竖直时,水声通讯设备的工作效果最佳。若钢桶倾斜,则影响设备的工作效果。钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。
系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。
问题1 某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。
问题2 在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。
**问题3 ** 由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。布放点的海水速度最大可达到1.5m/s、风速最大可达到36m/s。请给出考虑风力、水流力和水深情况下的系泊系统设计,分析不同情况下钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。
说明 近海风荷载可通过近似公式F=0.625×Sv2(N)计算,其中S为物体在风向法平面的投影面积(m2),v为风速(m/s)。近海水流力可通过近似公式F=374×Sv2(N)计算,其中S为物体在水流速度法平面的投影面积(m2),v为水流速度(m/s)。
附表 锚链型号和参数表
型号 | 长度(mm) | 单位长度的质量(kg/m) |
---|---|---|
I | 78 | 3.2 |
II | 105 | 7 |
III | 120 | 12.5 |
IV | 150 | 19.5 |
V | 180 | 28.12 |
表注:长度是指每节链环的长度。
问题分析及求解模型
问题一
问题一要求在选定电焊锚链和重物球质量的情况下,在某静止海域中计算在两种不同速度下的系泊系统的多项指标。针对此问题,首先假定浮标的吃水深度h 已知,利用整体法受力分析,得到锚链施加在钢桶上的作用力。在确定锚链的作用力之后,求解过程主要分为两个方面。一方面,对钢桶、各节钢管从下至上逐步受力分析,利用虚功原理求解倾角并得到约束力,随后将前一步得到的约束力作为下一步的主动力继续求解,直至钢桶、各节钢管的位形全部确定。另一方面,锚链上的作用力确定后可以确定锚链的形状,但此时应当就锚链是否全部悬空进行分类讨论,最后确定锚链实际的形状。完成以上两部分工作,可以求解钢桶、各节钢管、锚链以及浮标在水下的部分在垂向上的高度,表示成为 h 的函数。最后根据水深为 18 m 这一条件确定 h 的数值,从而解除题目中要求的各个指标。
问题二
问题二要求在问题一的假设下,计算 36m/s 时系泊系统的多项指标,并在此风速下调节重物球的质量,使得钢桶倾斜角度和锚点的锚链与海床的夹角在规定的范围内。由于基本假设没有改变,因此直接将风速 36m/s 代入即可求得结果。此时,根据求解得到的结果判断钢桶的倾角是否超过了 5°,锚链末端切线与海床的夹角是否超过 16°,并对重物球的质量进行调整,是系统满足要求。
问题三
问题三要求分析在水深、海水速度、风速变化的情况下的系泊系统设计。因为题目中要求的变量相比于一、二问增多,因此需要对问题一及问题二中使用的模型进行改进,并在受力分析过程中引入水流力。在此,考虑构建一个函数模型,其自变量为变化的各个参量,输出结果为题目中要求的各个指标。考虑到水深大小波动的影响,我们先人为给定一组风速,水流速以及两者之间的夹角,在此条件下就每种锚链求得一个最优结果,并挑选一个最优的解作为最后的系泊系统设计。最后,将模型应用于一个具体的浅海海域,根据区域的实际海水流速、海风风向,得到针对该区域的系泊系统最优设计。
B小区开放对道路通行的影响
2016年2月21日,国务院发布《关于进一步加强城市规划建设管理工作的若干意见》,其中第十六条关于推广街区制,原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步开放等意见,引起了广泛的关注和讨论。
除了开放小区可能引发的安保等问题外,议论的焦点之一是:开放小区能否达到优化路网结构,提高道路通行能力,改善交通状况的目的,以及改善效果如何。一种观点认为封闭式小区破坏了城市路网结构,堵塞了城市“毛细血管”,容易造成交通阻塞。小区开放后,路网密度提高,道路面积增加,通行能力自然会有提升。也有人认为这与小区面积、位置、外部及内部道路状况等诸多因素有关,不能一概而论。还有人认为小区开放后,虽然可通行道路增多了,相应地,小区周边主路上进出小区的交叉路口的车辆也会增多,也可能会影响主路的通行速度。
城市规划和交通管理部门希望你们建立数学模型,就小区开放对周边道路通行的影响进行研究,为科学决策提供定量依据,为此请你们尝试解决以下问题:
-
请选取合适的评价指标体系,用以评价小区开放对周边道路通行的影响。
-
请建立关于车辆通行的数学模型,用以研究小区开放对周边道路通行的影响。
-
小区开放产生的效果,可能会与小区结构及周边道路结构、车流量有关。请选取或构建不同类型的小区,应用你们建立的模型,定量比较各类型小区开放前后对道路通行的影响。
-
根据你们的研究结果,从交通通行的角度,向城市规划和交通管理部门提出你们关于小区开放的合理化建议。
问题分析及模型
问题一
由于题目中没有数据的支持,而且用以评价小区开放对周边道路通行的影响指标因素过多,我们考虑到应用聚类分析法和层次分析法来对各项指标进行决策。首先我们利用聚类分析法将单个指标因素按照关联度和相似度分为互不影响的三大类:一是影响主路通行能力[1]的因素,包括车道数,道路面积率,拥堵系数,路旁干扰系数以及区内支路饱和度[2];二是影响安全性的因素,包括交叉路口个数以及车辆种类;三是影响便捷度的因素,包括可达度[3]和抗堵塞能力。由此,我们列出了三个评价指标中的 9 个影响因素。其次考虑到影响因素过多且有些次要因素对主路通行能力影响不大,因此我们用
层次分析法来进行对影响因素的决策。在构造出评价矩阵之后,判断其一致性,最终得出适合评价小区开放对周边道路通行的影响的三个评价指标以及影响指标的 6 个因素,即车道数、拥堵系数、路旁干扰系数、区内支路饱和度、交叉口个数以及可达度。确立评价指标之后,进行评价体系的建立,其中小区对周边道路总影响由其对通行能力的影响,对安全性的影响以及对便捷度的影响共同决定。
问题二
我们利用问题一的评价指标体系,将主路通行能力、安全性和便捷度作为评价指标,将影响各个指标的因素作为对车辆通行的总影响。我们先依次通过构建模型来分析这三个指标的变化,最后利用模糊综合评判模型进行影响程度的判定。首先,对于道路交通能力的影响,我们知道,车道数、拥堵系数,路旁干扰系数、区内支路饱和度这四个因素都是直接影响车辆密度和车辆平均速度,进而间接影响道路通行能力。因此,我们将能够准确体现车辆密度和平均速度的“交通流”作为道路通行能力的主要描述参数。进而,我们结合元胞自动机模型[4],给出 NS 规则[5]下车辆密度和车辆平均速度,并据此求出车辆密度与车辆平均速度之间的关系图,以此来分析车辆通行情况。我们考虑到,小区开放与否会改变模型中的初始参数,进而影响车辆密度和车辆平均速度。据此,我们对初始参数进行改动,通过对比,便可以得出小区开放对周围道路交通流的影响。其次,对于安全性的影响,我们知道交叉路口是导致车祸等事故的多发地带,在小区开放前后,交叉口个数增多,因而会导致安全性有所降低。我们通过研究交叉路口的个数变化,建立交叉口车辆通行模型,定义潜在危险[6],定量分析小区开放对安全性的影响。接下来,对于便捷度的影响,我们通过可达度来体现便捷程度。我们通过建立最短路模型求出从小区一端到达小区另一端的最短路径之和,进而得到可达度,定量分析可达度的大小,得出小区开放对便捷度的影响。最后,我们建立模糊综合评判模型,对车辆通行能力、安全性和便捷度三个因素集建立了关于车辆通行的数学模型,将小区的结构、面积、各支路情况以及周边路况作为输入参数,即可得到小区开放对道路通行能力、安全性和便捷度的影响。
问题三
由问题二建立的模型,我们结合实例对第三问进行分析。在这一问中,我们选取五个具有代表性的小区示意图,运用第二问的模型,将行车速度、小区车道数、道路面积率、拥堵系数以及区内支路饱和度作为输入参数,综合分析各个参数之间的联系和各个参数对车辆通行的影响,从而得到不同结构、不同周边道路结构、不同车流量的小区开放对车辆通行的影响。
问题四
通过对问题二、三的研究和对小区实例的分析,我们从中分析总结小区开放与否的相关规律,然后结合分析小区结构及周边道路结构、车流量等因素,通过车辆通行能力、安全性以及便捷度等角度向城市规划和交通管理部门提出关于小区开放与否的合理化建议。
2017本科组
A CT系统参数标定及成像
CT(Computed Tomography)可以在不破坏样品的情况下,利用样品对射线能量的吸收特性对生物组织和工程材料的样品进行断层成像,由此获取样品内部的结构信息。一种典型的二维CT系统如图1所示,平行入射的X射线垂直于探测器平面,每个探测器单元看成一个接收点,且等距排列。X射线的发射器和探测器相对位置固定不变,整个发射-接收系统绕某固定的旋转中心逆时针旋转180次。对每一个X射线方向,在具有512个等距单元的探测器上测量经位置固定不动的二维待检测介质吸收衰减后的射线能量,并经过增益等处理后得到180组接收信息。
CT系统安装时往往存在误差,从而影响成像质量,因此需要对安装好的CT系统进行参数标定,即借助于已知结构的样品(称为模板)标定CT系统的参数,并据此对未知结构的样品进行成像。
请建立相应的数学模型和算法,解决以下问题:
(1) 在正方形托盘上放置两个均匀固体介质组成的标定模板,模板的几何信息如图2所示,相应的数据文件见附件1,其中每一点的数值反映了该点的吸收强度,这里称为“吸收率”。对应于该模板的接收信息见附件2。请根据这一模板及其接收信息,确定CT系统旋转中心在正方形托盘中的位置、探测器单元之间的距离以及该CT系统使用的X射线的180个方向。
(2) 附件3是利用上述CT系统得到的某未知介质的接收信息。利用(1)中得到的标定参数,确定该未知介质在正方形托盘中的位置、几何形状和吸收率等信息。另外,请具体给出图3所给的10个位置处的吸收率,相应的数据文件见附件4。
(3) 附件5是利用上述CT系统得到的另一个未知介质的接收信息。利用(1)中得到的标定参数,给出该未知介质的相关信息。另外,请具体给出图3所给的10个位置处的吸收率。
(4) 分析(1)中参数标定的精度和稳定性。在此基础上自行设计新模板、建立对应的标定模型,以改进标定精度和稳定性,并说明理由。
(1)-(4)中的所有数值结果均保留4位小数。同时提供(2)和(3)重建得到的介质吸收率的数据文件(大小为256×256,格式同附件1,文件名分别为problem2.xls和problem3.xls)
问题分析及求解模型
本问题主要研究畃畔系统的参数标定与成像。首先通过投影信息确定畘射线入射角度及探测器单元间距,通过图像重建确定旋转中心位置,完成系统参数标定;其次由投影信息直接重建图像,获取未知介质信息;最后分析参数标定的精度与稳定性,设计新模板并建立标定模型。
问题一
分析问题一,建立投影强度曲线的数学模型。首先分析椭圆投影宽度随畘射线角度的变化规律,以粗略确定各入射角及旋转中心。在各入射角度对应的投影强度曲线中,通过图像重建去除圆形模板影响的点位,拟合椭圆投影强度曲线,求解增益系数、探测器单元间距、入射角度的关系。其次在原强度曲线中,扣除椭圆投影的影响,得到由甸田组精确的圆形投影强度曲线。拟合圆形投影强度曲线,通过投影宽度求解探测器单元间距,从而精确求解增益系数与畘射线入射角度。最后通过图像重建,确定旋转中心位置。
问题二、三
CT系统的工作原理是由投影重建图像,针对平行束系统的重建算法包括直接反投影法、滤波反投影法、卷积反投影法等,相关文献中已有详细论述。针对问题二应以投影信息与标定所得系统参数作为输入,通过逆Radon变换重建图像,并对图像进行滤波去噪处理,以得到未知介质的信息。
问题四
分析问题一中参数标定的精度与稳定性,针对确定θ取值时所用的畡畲畣畣畯畳θ函数在极值点附近对误差的敏感性进行改进。提出以斜45°椭圆代替圆形的新模板,建立相应标定模型,对其精度与稳定性进行评估。
B 拍照赚钱”的任务定价
“拍照赚钱”是移动互联网下的一种自助式服务模式。用户下载APP,注册成为APP的会员,然后从APP上领取需要拍照的任务(比如上超市去检查某种商品的上架情况),赚取APP对任务所标定的酬金。这种基于移动互联网的自助式劳务众包平台,为企业提供各种商业检查和信息搜集,相比传统的市场调查方式可以大大节省调查成本,而且有效地保证了调查数据真实性,缩短了调查的周期。因此APP成为该平台运行的核心,而APP中的任务定价又是其核心要素。如果定价不合理,有的任务就会无人问津,而导致商品检查的失败。
附件一是一个已结束项目的任务数据,包含了每个任务的位置、定价和完成情况(“1”表示完成,“0”表示未完成);附件二是会员信息数据,包含了会员的位置、信誉值、参考其信誉给出的任务开始预订时间和预订限额,原则上会员信誉越高,越优先开始挑选任务,其配额也就越大(任务分配时实际上是根据预订限额所占比例进行配发);附件三是一个新的检查项目任务数据,只有任务的位置信息。请完成下面的问题:
-
研究附件一中项目的任务定价规律,分析任务未完成的原因。
-
为附件一中的项目设计新的任务定价方案,并和原方案进行比较。
-
实际情况下,多个任务可能因为位置比较集中,导致用户会争相选择,一种考虑是将这些任务联合在一起打包发布。在这种考虑下,如何修改前面的定价模型,对最终的任务完成情况又有什么影响?
-
对附件三中的新项目给出你的任务定价方案,并评价该方案的实施效果。
问题的分析及求解模型
问题一
问题一首先要求我们根据一项已完成项目的任务数据中的每个任务的位置、定价和完成情况来分析任务定价规律。在经济学中,一个竞争性市场上的商品价格规律受到供求关系影响而上下波动,因此,要分析定价规律,便需要找到影响定价的因素,对于每一个任务而言,它的定价与完成情况会受到其它任务与会员的影响,我们将从这两大方面考虑任务定价的影响因子,定义影响任务定价的四大影响因子。首先,我们将利用任务数据的经纬度与定价信息来进行图像分析观察出定价的定性规律,在此基础上,将标定任务位置的空间数据进行离散化处理,并根据任务的位置分布进行 K-Means 聚类分析,结合附件一给出的数据将影响因子量化。最后,利用灰色关联度矩阵计算各影响影响因子与定价之间的相关度,定量分析任务的定价规律。通过比较未完成任务与已完成任务的相关度矩阵之间的差异找出任务未完成的原因。
问题二
问题二的新的定价方案设计问题实际上是一个优化问题。由于附件一中任务定价存在某种不合理性导致了任务完成率低下,从企业定价的角度考虑,一个较优的定价方案应当让企业花费尽可能少的成本去得到更多的市场调查信息。因此我们将设计新的定价方案看做一个双目标优化问题,即在各种约束条件下设计出一个可以使得成本最小化、任务完成率最大化的定价方案。
在考虑最优定价方案时,不能完全从发布任务的企业角度来考虑,应当考虑到现实中任务被会员预定的过程中存在的规则。当企业发布任务数据后,不是任务挑选会员,而是会员挑选任务。该问题的难点便在于同时从企业和会员的两个角度进行考虑,将复杂的任务预定规则一一转化为约束条件。由于每个会员都有对应的信誉值以及任务开始预定时间和预定限额,并且信誉值越高,越优先挑选任务。我们按照时间顺序,依次对任务预定的时间点进行分析。建立每个任务对每位会员的吸引度矩阵,设立每个任务的吸引度阈值,设定约束条件,求解双目标优化模型。
问题三
问题三考虑到将位置比较集中的任务联合打包分布,因此,首先应当基于任务的经纬度信息,给出一个合理的打包方案,即如何判断哪些任务应当被打包发布。我们利用聚类分析法的思想,依据任务的地理坐标对任务进行分类,确定一个合理的打包方案。
依据打包方案将任务进行联合打包后,问题三实质上就可以转化为大致等同于问题二的双目标优化定价模型,要想对前面的定价模型进行修改,首先要明确将任务打包处理后会对哪些因素产生影响从而影响到定价。经分析可知打包处理后的任务与之前的任务相比,任务与会员之间的距离矩阵、任务对会员的吸引度矩阵、任务吸引度阈值均会发生改变,从而影响到优化定价模型的约束条件,最终将影响目标函数的求解,即定价方案。我们基于双重聚类分析给出的打包方案求解出新的距离矩阵、吸引度矩阵以及阈值,对前面的定价方案进行修改,给出任务联合打包发布情况下的优化定价方案。
问题四
问题四要求给出附件三中的新项目的任务定价方案,任务数据只有位置信息。考虑任务定价方案基于模型三的定价模型。模型三的结果与决策变量之间存在潜在机制,找到模型三影响定价与完成情况的因子之后,把影响因子的数值与定价、完成情况作为 BP 神经网络的训练样本,从而建立 BP 神经网络预测模型,仿照模型一和模型三,对新任务分别进行聚类分析,得到影响因素的值,并作为神经网络预测样本。然后通过预测就能够得到新任务打包下的定价以及相应完成情况。
2018本科组
A 高温作业专用服装设计
在高温环境下工作时,人们需要穿着专用服装以避免灼伤。专用服装通常由三层织物材料构成,记为I、II、III层,其中I层与外界环境接触,III层与皮肤之间还存在空隙,将此空隙记为IV层。
为设计专用服装,将体内温度控制在37ºC的假人放置在实验室的高温环境中,测量假人皮肤外侧的温度。为了降低研发成本、缩短研发周期,请你们利用数学模型来确定假人皮肤外侧的温度变化情况,并解决以下问题:
(1) 专用服装材料的某些参数值由附件1给出,对环境温度为75ºC、II层厚度为6 mm、IV层厚度为5 mm、工作时间为90分钟的情形开展实验,测量得到假人皮肤外侧的温度(见附件2)。建立数学模型,计算温度分布,并生成温度分布的Excel文件(文件名为problem1.xlsx)。
(2) 当环境温度为65ºC、IV层的厚度为5.5 mm时,确定II层的最优厚度,确保工作60分钟时,假人皮肤外侧温度不超过47ºC,且超过44ºC的时间不超过5分钟。
(3) 当环境温度为80ºC时,确定II层和IV层的最优厚度,确保工作30分钟时,假人皮肤外侧温度不超过47ºC,且超过44ºC的时间不超过5分钟。
问题分析及模型求解
问题一
高温作业下的专用服装分为四层,对于第四层考虑其服装材料的参数值如密度,比热容以及热传导率可认为是空气层。体内温度为 37℃的假人放置在 75℃高温实验室中,皮肤温度根据热传导可以得出所有层织物以及空气在初始时刻的温度为 37℃;75℃的高温热源是恒温源;通过分析附件 2 中皮肤外侧温度随时间的变化,最后在 1148 秒左右温度维持在 48℃,之所以会维持一个稳定值,是因为假人体内的温度维持在 37℃,这使得假人皮肤外侧的温度会维持一个稳定值。假人体内相当于一个不断吸热的耗散源,但同时又需维持自身的恒定温度。对于问题一是首先分析热量传输的过程,在专用服装的阻热过程中主要考虑热传导,在间隙层中考虑空气的热量传输,又因为查阅相关文献【2】得知在间隙层厚度小于 6.4mm 时主要考虑热传导过程不考虑热对流以及热辐射过程。本问题中由于各层阻热各向同性,所以仅考虑一维情况下的温度分布。基于此根据能量守恒定律以及 Fourier 实验定律可以得出四层介质的热传导方程,再根据初始时刻的温度分布确定方程的初始条件,这里选取初始时假人体内温度 37℃当作所有层的初始温度。其次根据温度场的连续性以及热传导规律确定衔接条件。再根据最终高温恒温热源以及低温恒温热源确定方程的边界条件。考虑到最终求得的是温度场的分布,应该包括空间以及时间分布,并且这四组偏微分方程求不出解析
表达式,所以利用有限数值差分法进行数值求解。最终,根据附件 2 中的表面皮肤温度结合方程,得出低温恒温热源的热交换系数 ,并且需要在接下来的两问中作为低温恒温热源的参数。
问题二
考虑到问题中附件 1 给出的专用服装材料的参数值,可以发现Ⅰ层和Ⅲ层的热导率较小因而阻热能力较好并且厚度都是保持不变,所以第Ⅰ、第Ⅲ层需要较高的经济成本,相比于第Ⅱ层的介质热导率较高阻热效果相对较差,因此可以通过改变第Ⅱ层的厚度来进行调节温度场的分布,从而使皮肤外层的温度在一定范围内且时间上满足一定条件。因此以第Ⅱ层介质的厚度为目标函数,通过第一问中标定的参数热交换系数 ,列出新的偏微分方程边界条件以及温度场的约束条件,使得第Ⅱ层介质的厚度最小。在具体求解中由于解偏微分方程需要进行数值逼近,因此选用优选法进行快速搜索最终确定最小的厚度,此即问题二中最优的厚度
问题三
问题三中需要考虑最后空气层的厚度以及第Ⅱ层介质的厚度,通过查阅相关文献【2】得知,人体外表皮在温度大于 44℃时开始发生热损伤,但是在此题中给出 30 分钟内不超过 47℃,并且由于外表温度是单调非递减,所以必定在 25分钟之后升至 44℃。这可以作为问题三中的约束条件。综合第二问的算法,先以第Ⅱ层以及第Ⅳ层的厚度每次按照 0.1mm 的步长往上递增构造成一个二元点集,接着在平面的点上进行遍历搜索将满足约束条件的点找出,再根据第Ⅱ层的厚度最小原则进行筛选。又因为人体在高温环境下不会被损伤到的温度为
44℃,所以超过 44℃以后,人待在高温环境下的时间应当尽可能地短。
B 智能RGV的动态调度策略
图1是一个智能加工系统的示意图,由8台计算机数控机床(Computer Number Controller,CNC)、1辆轨道式自动引导车(Rail Guide Vehicle,RGV)、1条RGV直线轨道、1条上料传送带、1条下料传送带等附属设备组成。RGV是一种无人驾驶、能在固定轨道上自由运行的智能车。它根据指令能自动控制移动方向和距离,并自带一个机械手臂、两只机械手爪和物料清洗槽,能够完成上下料及清洗物料等作业任务(参见附件1)。
针对下面的三种具体情况:
(1)一道工序的物料加工作业情况,每台CNC安装同样的刀具,物料可以在任一台CNC上加工完成;
(2)两道工序的物料加工作业情况,每个物料的第一和第二道工序分别由两台不同的CNC依次加工完成;
(3)CNC在加工过程中可能发生故障(据统计:故障的发生概率约为1%)的情况,每次故障排除(人工处理,未完成的物料报废)时间介于10~20分钟之间,故障排除后即刻加入作业序列。要求分别考虑一道工序和两道工序的物料加工作业情况。
请你们团队完成下列两项任务:
**任务1:**对一般问题进行研究,给出RGV动态调度模型和相应的求解算法;
**任务2:**利用表1中系统作业参数的3组数据分别检验模型的实用性和算法的有效性,给出RGV的调度策略和系统的作业效率,并将具体的结果分别填入附件2的EXCEL表中。
表1:智能加工系统作业参数的3组数据表 时间单位:秒
系统作业参数 | 第1组 | 第2组 | 第3组 |
---|---|---|---|
RGV移动1个单位所需时间 | 20 | 23 | 18 |
RGV移动2个单位所需时间 | 33 | 41 | 32 |
RGV移动3个单位所需时间 | 46 | 59 | 46 |
CNC加工完成一个一道工序的物料所需时间 | 560 | 580 | 545 |
CNC加工完成一个两道工序物料的第一道工序所需时间 | 400 | 280 | 455 |
CNC加工完成一个两道工序物料的第二道工序所需时间 | 378 | 500 | 182 |
RGV为CNC1#,3#,5#,7#一次上下料所需时间 | 28 | 30 | 27 |
RGV为CNC2#,4#,6#,8#一次上下料所需时间 | 31 | 35 | 32 |
RGV完成一个物料的清洗作业所需时间 | 25 | 30 | 25 |
注:每班次连续作业8小时。
问题分析及求解模型
问题一
该问题要求根据一般问题,给出 RGV 动态调度模型和相应的求解算法。针对该问题,首先需要对该系统的运行特点进行一定的抽象、概括和证明,例如:在最优的调度策略下各部分机器效率应当均衡的。这些规则将用于构建 RGV 动态调度模型。针对情况 1,结合对系统分析的结果,可以将 8 个 CNC 转换为 8 个工作队列,将物料加工作业抽象为队列中的事件,则题目第一问可以转换为完成队列中带约束条件的任务最优调度。转换完成后,可从时间维度对系统基于事件进行状态划分。基于该状态划分结果,可以构建最优状态转移图(有向有权图)模型,其中带权节点代表 CNC 的处理时间、带权有向边带代表 RGV 将清洗工作、停止等待以及移动所需要的时间,由此构
建状态向量和状态转移矩阵。该模型以最大化有限时间内完成的熟料数目最多为目标,而约束则可引入总工时约束、物料加工用时约束、RGV 运动时间的约束等。此外,该问题还可以从建立物料数目确定,最小化时间的角度考虑建立相应最优化模型等。最优状态转移图模型的化简工作可以考虑以两无权点及该两点所确定的一条带权有向边代替原来的带权点,从而完成对模型的构建和化简。针对情况 2,我们可以建立带有工序约束的最优状态转移模型。该模型依然是基于系统状态转移的思想,可以证明工序一、二紧邻是系统高效率的指导原则,我们修改状态转移矩阵的约束条件,限制状态向量的转移方向从而完成问题的求解。最优化目标依然是在有限时间内最大化生产熟料数目。针对情况 3,我们可以在最优状态转移图模型和带有工序约束的最优状态转移模型的基础上引入突发事件随机变量,通过引入该随机变量限制部分状态的转移效果,同时引入等待时间变量,从而完成问题模型的建立。对于算法的求解可以采用引入剪枝规则、回溯法、分支限界法等。值得注意的是,在该求解该模型时,分支限界法求解目标则是尽快找出满足约束条件的一个解,或在满足约束条件的解中找出在某种意义下的最优解,更适合求解离散最优化问题。但是,考虑到即使引入剪枝策略等模型求解的时间和空间复杂度可能较大,因此在求解算法时采用分阶段优化的策略完成模型的求解,同时采用基于事件的时间离散化处理,最后可以对结果进行分析比较,作为模型的近似解。除此之外,在该类最优化问题求解时,也可以采用混合遗传算法 [1]、禁忌搜索算法 [2] 等。
问题二
该问题可以通过输入题目提供的数据检验模型的实用性和算法的有效性,并对结果和系统基本上限进行比较,判断模型和算法的实用性和有效性,同时输出该过程中 RGV的调度策略。对于系统的作业效率,可以定义系统工作效率为系统中 CNC 的工作时间在一个工时内比例。此外,可从系统工作效率均衡的角度分析模型实用性和算法的有效性。