逻辑回归 手写代码笔记(python)

逻辑回归

前言

建议先了解线性回归,本文记录自己学习过程,不涉及具体理论

过程

导包

import numpy as np
import matplotlib.pyplot as plt

获取数据
数据是网上找的,下载链接,点我
就是100条数据,属性:坐标x, 坐标y, 类别

filePath = 'dataSet.txt' # 路径自己改
data = [line.strip() for line in open(filePath)]
data = data[:5] # 只拿前5条做示范
print(data)

在这里插入图片描述
将x, y, label用列表提出

x = []
y = []
label = []
for d in data:
    dList = d.split(' ')
    x.append(float(dList[0]))
    y.append(float(dList[1]))
    label.append(int(dList[2]))
print(x, y, label)

在这里插入图片描述

画图
把这些点画出来

i = 0
for item in label:
    if item == 0:
        plt.scatter(x[i], y[i], color = 'red') # 第一类用红点
    elif item == 1:
        plt.scatter(x[i], y[i], color = 'green') # 第二类用绿点
    i += 1

在这里插入图片描述
数据处理
由于后面有矩阵运算,用列表的话涉及很多for循环,所以将list类型转为np类型,更简便

# 数据处理,列表转为np形式
x = np.concatenate([x])
x = x.reshape(len(x), 1)

y = np.concatenate([y])
y = y.reshape(len(x), 1)
# 把y加入x
x = np.hstack((x, y))
# X 加一列全是1的矩阵
ones = np.ones((len(x), 1))
x = np.hstack((x, ones))
# label同理
label = np.concatenate([label])
label = label.reshape(len(x),1)

细节说明:

print(x, type(x))
x = np.concatenate([x])
print(x, type(x))

在这里插入图片描述

x.reshape(len(x), 1)
# 将x从一个1×m的矩阵->m × 1矩阵(列向量)
np.hstack((x, y))
# 指x,y这两个列向量融合,变为m × 2矩阵

注意,此处易错,x,y都是特征,所以都要放入特征矩阵。再加入一列全1,是为了偏置值(看看理论推导就懂了,笔者第一次做时,以为y不是特征,弄了一下午,结果错得很离谱~)

逻辑回归部分

def LogisticRegression(x, label):
    num = 1000                       	  #迭代1000轮
    W = np.array([0, 0, 0]).reshape(3, 1) # W权重系数,初始化0,列向量
    alpha = 0.01                   		  # 学习率
    predict = sigmoid(x, W)           	  # 预测值
    gradient = getGradient(x, label, predict)# 计算梯度,代码简单,背后公式推导比较长
    for i in range(num):
        W = W - alpha * gradient		  # 梯度下降做法,更新权重系数W
        predict = sigmoid(x, W)			  # 重复上面操作
        gradient = getGradient(x, label, predict)
    return W

预测函数sigmoid

def sigmoid(x, W):
    z = np.dot(x, W) # np.dot是点积,即z = w0*x1 + w1*y1 + w2*1,z也是列向量
    return 1 / (1 + np.exp(-z))  # 返回的是预测值,也是列向量

X = ( x 1 y 1 1 x 2 y 2 1 . . . x m y m 1 ) W = ( w 0 w 1 w 2 ) Z = X W = ( w 0 x 1 + w 1 y 1 + w 2 . . . w 0 x m + w 1 y m + w 2 ) X = \begin{pmatrix} x_1 & y_1 &1 \\ x_2 & y_2 &1 \\...\\ x_m & y_m &1 \end{pmatrix} W = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \end{pmatrix} \\ Z=XW = \begin{pmatrix} w_0 x_1 + w_1y_1 + w_2 \\ ... \\ w_0 x_m + w_1y_m + w_2 \end{pmatrix} X=x1x2...xmy1y2ym111W=w0w1w2Z=XW=w0x1+w1y1+w2...w0xm+w1ym+w2

计算梯度
梯度下降的函数,和线性回归相似但不同
W = W − α X T ( p r e d i c t − t r u e ) W= W - \alpha X^T(predict - true) W=WαXT(predicttrue)
X是特征矩阵,predict,true分别为 预测值,真实值 的列向量
X T ( p r e d i c t − t r u e ) X^T(predict - true) XT(predicttrue) 就是我们要算的梯度
数学推导来源---->这里

def getGradient(x, label, predict):
	# 前面除的是为了均值,不重要
    gradient = (1./len(label)) * (np.dot(np.transpose(x), (predict - label)))
    return gradient

画线
最后就是画出我们的分割线啦,通过不断地梯度下降,得到了一组很好的权重系数W,它就是系数

x1 = np.linspace(-5, 5, 100)   #创建一个等差数列,用于画图的x点
y1 = (W[0]*x1 + W[2]) / -W[1]  # w[0]*x+ w[1]*y + w[2] = 0, 求解y (x,y其实就是x1, y1)
plt.plot(x1, y1)			   # 画直线

结果如图:
在这里插入图片描述

完整代码:

import numpy as np
import matplotlib.pyplot as plt

# 数据获取
def createDataSet():
    filePath = 'dataSet.txt'
    data = [line.strip() for line in open(filePath)]
    x = []
    y = []
    label = []
    for d in data:
        dList = d.split(' ')
        #print(dList)
        x.append(float(dList[0]))
        y.append(float(dList[1]))
        label.append(int(dList[2]))
    drawScatter(x, y, label)
    x ,label = dataProcess(x, y, label)
    print(f'{len(x)}条数据')
    return x, label

def dataProcess(x, y, label):
    # 数据处理,列表转为np形式
    x = np.concatenate([x])
    x = x.reshape(len(x), 1)

    y = np.concatenate([y])
    y = y.reshape(len(x), 1)
    x = np.hstack((x, y))
    
    #X与一个len1行1列的矩阵合并
    ones = np.ones((len(x), 1))
    x = np.hstack((x, ones))
    
    label = np.concatenate([label])
    label = label.reshape(len(x),1)
    return x, label
    
# 画点
def drawScatter(x, y, label):
    i = 0
    for item in label:
        if item == 0:
            plt.scatter(x[i], y[i], color = 'red')
        elif item == 1:
            plt.scatter(x[i], y[i], color = 'green')
        i += 1
    
def sigmoid(x, W):
    z = np.dot(x, W) # np.dot是点积
    return 1 / (1 + np.exp(-z))

def getGradient(x, label, predict):
    gradient = (1./len(label)) * (np.dot(np.transpose(x), (predict - label)))
    return gradient

def LogisticRegression(x, label):
    num = 10000                       #迭代10000轮
    W = np.array([0, 0, 0]).reshape(3, 1)
    alpha = 0.01                      # 学习率
    predict = sigmoid(x, W)             # 预测值
    #print('预测值 ', predict)
    gradient = getGradient(x, label, predict)
    #print('梯度 ', gradient)
    for i in range(num):
        W = W - alpha * gradient
        predict = sigmoid(x, W)
        gradient = getGradient(x, label, predict)
    return W

if __name__ == '__main__':
    x, label = createDataSet()
    W = LogisticRegression(x, label)
    # 画线
    x1 = np.linspace(-5, 5, 100)
    y1 = (W[0]*x1 + W[2]) / -W[1]
    plt.plot(x1, y1)

参考文章

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值