function (递归和记忆化搜索)

题目描述

对于一个递归函数w(a,b,c)w(a,b,c)

  • 如果a≤0 or b≤0 or c≤0就返回值1.
  • 如果a>20 or b>20 or c>20就返回w(20,20,20)
  • 如果a<b并且b<c就返回w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c)
  • 其它的情况就返回w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1)

这是个简单的递归函数,但实现起来可能会有些问题。当a,b,c均为15时,调用的次数将非常的多。你要想个办法才行.

/* absi2011 : 比如 w(30,-1,0)既满足条件1又满足条件2

这种时候我们就按最上面的条件来算

所以答案为1

*/

输入输出格式

输入格式:

 

会有若干行。

并以-1,-1,-1结束。

保证输入的数在[-9223372036854775808,9223372036854775807]之间,并且是整数。

 

输出格式:

 

输出若干行,每一行格式:

w(a, b, c) = ans

注意空格。

 

输入输出样例

输入样例#1: 复制

1 1 1
2 2 2
-1 -1 -1

输出样例#1: 复制

w(1, 1, 1) = 2
w(2, 2, 2) = 4

说明

记忆化搜索

#include<stdio.h>
//记忆化搜索,开一个20,20,20的数组
int s[21][21][21];

int w(int a,int b,int c){
    if(a<=0||b<=0||c<=0) return 1;
    else if(a>20||b>20||c>20) return w(20,20,20);
    else if(!s[a][b][c]){    //每次递归,都会确定一些s中的元素的值,这样以后的递归可直接使用
        if(a<b&&b<c)
        s[a][b][c]=w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c);   
        else s[a][b][c]=w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1);
    }
    return s[a][b][c];
}

int main(){
    int a,b,c;
    while(~scanf("%d %d %d",&a,&b,&c)){
        if(a==-1&&b==-1&&c==-1)
        break;
        printf("w(%d, %d, %d) = %d\n",a,b,c,w(a,b,c));
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值