题目描述
对于一个递归函数w(a,b,c)w(a,b,c)
- 如果a≤0 or b≤0 or c≤0就返回值1.
- 如果a>20 or b>20 or c>20就返回w(20,20,20)
- 如果a<b并且b<c就返回w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c)
- 其它的情况就返回w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1)
这是个简单的递归函数,但实现起来可能会有些问题。当a,b,c均为15时,调用的次数将非常的多。你要想个办法才行.
/* absi2011 : 比如 w(30,-1,0)既满足条件1又满足条件2
这种时候我们就按最上面的条件来算
所以答案为1
*/
输入输出格式
输入格式:
会有若干行。
并以-1,-1,-1结束。
保证输入的数在[-9223372036854775808,9223372036854775807]之间,并且是整数。
输出格式:
输出若干行,每一行格式:
w(a, b, c) = ans
注意空格。
输入输出样例
输入样例#1: 复制
1 1 1
2 2 2
-1 -1 -1
输出样例#1: 复制
w(1, 1, 1) = 2
w(2, 2, 2) = 4
说明
记忆化搜索
#include<stdio.h>
//记忆化搜索,开一个20,20,20的数组
int s[21][21][21];
int w(int a,int b,int c){
if(a<=0||b<=0||c<=0) return 1;
else if(a>20||b>20||c>20) return w(20,20,20);
else if(!s[a][b][c]){ //每次递归,都会确定一些s中的元素的值,这样以后的递归可直接使用
if(a<b&&b<c)
s[a][b][c]=w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c);
else s[a][b][c]=w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1);
}
return s[a][b][c];
}
int main(){
int a,b,c;
while(~scanf("%d %d %d",&a,&b,&c)){
if(a==-1&&b==-1&&c==-1)
break;
printf("w(%d, %d, %d) = %d\n",a,b,c,w(a,b,c));
}
return 0;
}