零基础带你玩转折纸问题(分析+代码详解)

转折纸问题

需求:
请把纸条竖着放在桌⼦上,然后从纸条的下边向上⽅对折1次,压出折痕后再展 开。此时折痕是凹下去的,即折痕突起的方向指向纸条的背面。如果从纸条的下边向上方连续对折2次,压出折痕后展开,此时有三条折痕,从上到下依次是下折痕,下折痕和上折痕。
给定一个输入参数N,代表纸条都从下边向上方连续对折N次,请从上到下打印出所有折痕的方向。
例如:N = 1时: down; N = 2时,打印:down down up
在这里插入图片描述分析:
我们把对折后的纸张翻过来,让粉色朝下,这时把第一次对折产生的折痕看作是根结点,那么第二次对折产生的下折痕就是该结点的左子结点,二第二次对折产生的上折痕就是该结点的右子结点,这样我们就可以使用树型数据结构来描述对折后产生的折痕;
这棵树右这样的特点:
1:根结点为下折痕;
2:每一个结点的左子结点为下折痕;
3:每一个结点的右子结点为上折痕;

折叠三次结果为<中序遍历结果>:down down up down down up up

		down
	   /    \
	down     up
	/ \     /  \
 down up  down  up

实现步骤:
1:定义结点类;
2:构建深度为N的折痕树;
3:使用中序遍历,打印出树中所有结点的内容;

构建深度为N的折痕树:
1:第一次对折,只有一条折痕,创建根结点;
2:如果不是第一次对折,则使用队列保存根结点;
3:循环队列遍历:
3.1:从队列中拿出一个结点;
3.2:如果这个结点的左子结点不为空,则把这个左子结点添加到队列中;
3.3:如果这个结点的右子结点不为空,则把这个右子结点添加到队列中;
3.4:判断当前结点的左子结点和右子结点是否都为空,如果是,则需要为当前结点创建一个值为down的左子结点,一个值为up的右子结点;

实现代码如下:
//注意:由于要用到队列,本文提供链接:数据结构之队列

public class PagerFoldde {
    public static void main(String[] args) {
        //模拟折纸过程,产生树
        Node<String> tree = creatTree(3);
        //遍历树,打印每个结点
        printTree(tree);
    }
    //通过模拟对折N次纸张,产生树
    public static Node creatTree(int N){
        //定义根结点
        Node<String> root = null;
        for (int i = 0; i < N; i++) {

            //1.当前是第一次对折
            if(i == 0){
                root = new Node<>("down", null, null);
                continue;
            }

            //2.当前不是第一次对折
            //定义一个辅助队列,通过层序遍历的思想,找到叶子结点,叶子结点添加子结点
            Queue<Node> queue = new Queue<>();
            queue.enQueue(root);

            //循环遍历队列
            while (!queue.isEmpty()){
                //从队列中弹出一个结点
                Node tmp = queue.dequeue();
                
                //如果有左子结点,则把左子结点放入到队列中
                if(tmp.left != null){
                    queue.enQueue(tmp.left);
                }
                
                //如果有右子结点,则把左子结点放入到队列中
                if(tmp.right != null){
                    queue.enQueue(tmp.right);
                }
                
                //如果同时没有左子结点和右子结点,那么证明该结点为叶子结点
                if(tmp.left == null && tmp.right == null){
                    tmp.left = new Node("down",null,null);
                    tmp.right = new Node("up",null,null);
                }
                
            }
        }
        return root;
    }

    //打印树中每个结点到控制台
    public static void printTree(Node<String> root){
        //需要使用中序遍历完成
        if(root == null){
            return;
        }
        
        //打印左子树中的每个结点
        if(root.left != null){
            printTree(root.left);
        }
        
        //打印当前结点
        System.out.print(root.item+" ");
        //打印右子树的每个结点
        if(root.right != null){
            printTree(root.right);
        }
        
    }

    //结点类
    private static class Node<T>{
        public T item;//存储元素
        public Node left;
        public Node right;

        //构造函数
        public Node(T item,Node left,Node right){
            this.item = item;
            this.left = left;
            this.right = right;
        }
    }
}

运行结果如图:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

碳烤小肥羊。。。

你的鼓励是我创造最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值