pandas.read_csv()函数读取文件是,关于“header=None”影响读取列数区间的闭合和总结

本文介绍了pandas的read_csv()函数在处理无字段名标题的数据时,如何使用`header=None`参数。当`header=None`时,读取的列区间为左闭右闭;反之,则为左闭右开。示例中展示了如何正确选取数据子集,以及`names`参数的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pandas.read_csv()函数读取文件是,关于“header=None”影响读取列数区间的闭合和总结

对于一个没有字段名标题的数据,如data.csv
在这里插入图片描述

1.获取数据内容。pandas.read_csv(“data.csv”)默认情况下,会把数据内容的第一行默认为字段名标题。

import pandas as pd
# 读取数据
df =  pd.read_csv("../data/data.csv")
print(df)

在这里插入图片描述
为了解决这个问题,我们添加“header=None”,告诉函数,我们读取的原始文件数据没有列索引。因此,read_csv为自动加上列索引。

import pandas as pd
# 读取数据
df =  pd.read_csv("../data/data.csv", header=None)
print(df)

在这里插入图片描述

2.局部获取。有时候我们需要取某些列数据,如下(X,y):
在这里插入图片描述

pd.read_csv()函数有"header=None"参数:

import pandas as pd
# 读取数据
df =  pd.read_csv("../data/data.csv", header=None)
# 注意有"header=None", df.ix[:,0:4]就是左闭右闭的区间
X= df.ix[:,0:4]
y = df.ix[:,5]
print(X)
print(y)

在这里插入图片描述
在这里插入图片描述
pd.read_csv()函数没有"header=None"参数:

import pandas as pd
# 读取数据
df =  pd.read_csv("../data/data.csv")
# 注意没有"header=None", df.ix[:,0:4]就是左闭右开的区间
X= df.ix[:,0:4] # 实际上X应该是df.ix[:,0:5]
y = df.ix[:,5]
print(X)
print(y)

在这里插入图片描述
在这里插入图片描述
在第二种情况中,带上names属性还是df.ix[:,0:4]就是左闭右开的区间。

# 设置表头
names = ["US0","US1","US2","US3","US4","Class"]
# 读入数据 (没有属性行:header=None)
df =  pd.read_csv("../data/data.csv", names=names)
# 注意没有"header=None", df.ix[:,0:4]就是左闭右开的区间
X= df.ix[:,0:4] # 实际上X应该是df.ix[:,0:5]
y = df.ix[:,5]
print(df)
print(X)
print(y)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

总结:pd.read_csv()函数,有"header=None", df.ix[:,0:4]就是左闭右闭的区间;没有"header=None", df.ix[:,0:4]就是左闭右开的区间。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

碳烤小肥羊。。。

你的鼓励是我创造最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值