盲签名(Blind Signature) —— RSA方案

基于RSA的盲签名方案:

传统的 RSA 加解密方案大致过程如下:

  • 加密: c ≡ m e ( m o d n ) c \equiv m^e (mod n) cme(modn).
  • 解密: m ≡ c d ( m o d n ) m \equiv c^d (mod n) mcd(modn).

  签名者一般是基于消息的哈希值签名的, 对于盲签名的要求就是签名者不能事先知道消息,所以这里的RSA盲签名方案做了巧妙的转变,就是首先将消息 m m m 转化(盲化)为 m ′ m^{'} m, 在此需要一个参数 r r r , 且满足 g c d ( r , N ) = 1 gcd(r, N)=1 gcd(r,N)=1。下面是基于RSA盲签名的具体过程:

  1. 盲化消息: m ′ ≡ m r e ( m o d N ) m^{'} \equiv mr^e (mod N) mmre(modN).
  2. 签名消息: s ′ ≡ ( m ′ ) d ( m o d N ) s^{'} \equiv (m^{'})^d (mod N) s(m)d(modN).
  3. 除盲消息: s ≡ s ′ r − 1 ( m o d N ) s \equiv s^{'}r^{-1}(mod N) ssr1(modN).

  方案有效性验证: r e d ≡ r ( m o d N ) r^{ed} \equiv r (mod N) redr(modN) s ≡ s ′ r − 1 ≡ ( m ′ ) d r − 1 ≡ m d r e d r − 1 ≡ m d r r − 1 ≡ m d ( m o d N ) s \equiv s^{'}r^{-1} \equiv (m^{'})^dr^{-1} \equiv m^dr^{ed}r^{-1} \equiv m^drr^{-1} \equiv m^d(modN) ssr1(m)dr1mdredr1mdrr1md(modN)

参考资料http://en.wikipedia.org/wiki/Blind_Signatures

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

碳烤小肥羊。。。

你的鼓励是我创造最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值