279. 完全平方数 (数学定理 四平方数之和定理)

这篇博客探讨了LeetCode第279题的解决方案,主要涉及数学定理在算法中的应用。首先介绍了如何通过数学公式判断一个数是否能由最多4个平方数构成,然后讨论了当数为平方数时的特殊情况。博主还分享了一种利用贪心策略解决此问题的方法,并提供了详细的代码实现。文章深入浅出地解析了问题的各个层面,适合对算法和数学有兴趣的读者阅读。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LeetCode: 279. 完全平方数

在这里插入图片描述


这道题如果知道数学定理之后,相当于告诉你:

任何正整数都可以拆分成不超过4个数的平方和 —> 答案只可能是1,2,3,4
如果一个数最少可以拆成4个数的平方和,则这个数还满足 n = (4^a)*(8b+7) —> 因此可以先看这个数是否满足上述公式,如果不满足,答案就是1,2,3了
如果这个数本来就是某个数的平方,那么答案就是1,否则答案就只剩2,3了
如果答案是2,即n=a2+b2,那么我们可以枚举a,来验证,如果验证通过则答案是2
只能是3



数学定理

func numSquares(n int) int {

    // 数学结论
    // 4 ^ k (8 * m + 7)  == n 满足这条式子 >>  说明有 4 个平方数组成
    for n % 4 == 0{
        n /= 4
    }
    if n % 8 == 7 {
        return 4
    }

    // 等于自己开根的平方
    if int(math.Sqrt(float64(n))) * int(math.Sqrt(float64(n))) == n {
        return 1
    }

    for i := 1; i * i < n; i++ {
        temp := int(math.Sqrt(float64(n - i * i))) * int(math.Sqrt(float64(n - i * i)))
        if temp + i * i == n {
            return 2
        }
    }
    
    return 3
}




还有一种解法 >> 利用 set 贪心可以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值