Bilinear Pairing双线性配对的解释

本文深入探讨了双线性映射的概念,包括其双线性、非退化性和可计算性的基本性质。双线性映射涉及两个素数阶循环群之间的特殊映射,保证了特定数学关系的保持。非退化性表明存在群元素可以被映射,而可计算性意味着这种映射可以通过有效算法实现。这一理论在密码学和安全领域有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Bilinear Pairing双线性配对的解释

论文中的定义

在这里插入图片描述

解释

双线性映射定义了两个素数p阶群乘法循环群g1,g2,循环群的意思是,群g中的每一个元素都是g中某一个固定元素q的乘方,例如 g={q1,q2,q3,…}。g1 ×g1→g2表示分别从循环群g1中提取元素,并进行某种运算可以得到g2中的元素。这里的e就是映射算法。

a)双线性:先解释下 Z*p 的含义,它是[1,p-1]之间所有与p互质的数的集合,这里表示的就是映射e所满足的双线性关系。
b)非退化性:存在g1中的元素可以映射出g2中的元素。
c)可计算性:可找到有效的算法实现该映射算法。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值