题目: 给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。求在该柱状图中,能够勾勒出来的矩形的最大面积。注意是勾勒得图形(连着的) 不是组成矩形容器
输入: [2,1,5,6,2,3] 输出: 10
-
单调栈分为单调递增栈和单调递减栈
1.1 单调递增栈即栈内元素保持单调递增的栈
1.2 同理单调递减栈即栈内元素保持单调递减的栈 -
操作规则(下面都以单调递增栈为例)
2.1. 如果新的元素比栈顶元素大,就入栈
2.2. 如果新的元素<=栈顶,那就一直把栈内元素弹出来,直到栈顶比新元素小 或者栈空 -
加入这样一个规则之后,会有什么效果
3.1. 栈内的元素是递增的
3.2. 当元素出栈时,说明这个新元素是出栈元素右边第一个比它小的元素
3.3 同时, 新栈顶是出栈元素左边第一个比它小的
以输入为例,现在索引到i=4 num=2,栈里是 1 5 6(实际栈里存156的索引, 方便计算宽 )
2<6 那么 6 需要出栈。
当 6 出栈时,右边 2 代表是 6 右边第一个比 6 小的元素。
当元素出栈后,5 成为新的栈顶,那么 5 就是 6 左边第一个比 6 小的元素。
6被5和2夹在了中间 可以求以6为高 勾勒的最大矩形