题目描述
描述:给一个长度为n链表,若其中包含环,请找出该链表的环的入口结点,否则,返回null。
数据范围: n≤10000,1<=结点值<=10000。
要求:空间复杂度 O(1),时间复杂度 O(n)。
例如,输入{1,2},{3,4,5}时,对应的环形链表如下图所示:
可以看到环的入口结点的结点值为3,所以返回结点值为3的结点。
输入描述:输入分为2段,第一段是入环前的链表部分,第二段是链表环的部分,后台会根据第二段是否为空将这两段组装成一个无环或者有环单链表。
返回值描述:返回链表的环的入口结点即可,我们后台程序会打印这个结点对应的结点值;若没有,则返回对应编程语言的空结点即可。
输入:{1,2},{3,4,5}
返回值:3
说明:返回环形链表入口结点,我们后台程序会打印该环形链表入口结点对应的结点值,即3
输入:{1},{}
返回值:"null"
说明:没有环,返回对应编程语言的空结点,后台程序会打印"null"
输入:{},{2}
返回值:2
说明:环的部分只有一个结点,所以返回该环形链表入口结点,后台程序打印该结点对应的结点值,即2
解题思路
链表中环的入口结点:最直观的想法是,快慢指针,快指针每次走两步,慢指针每次走一步,如果链表中有环,则快慢指针一定在环中相遇,假设从链表起始位置到环形入口位置距离为x,从环形入口位置到相遇位置距离为y,从相遇位置到环形入口位置距离为z,则快指针为x+y+n(y+z),慢指针为x+y,由于快指针一次走两步慢指针一次走一步,故(x+y)*2=x+y+n(y+z),化简得到x+y=n(y+z),即x=(n-1)(y+z)+z,由于n大于等于1,故不妨取1得到x=z,于是两指针相遇时,令一个指针从链表起始位置开始走,令一个指针从相遇位置开始走,当两者再次相遇时即为环形入口位置。
ListNode* EntryNodeOfLoop(ListNode* pHead)
{
ListNode *fast=pHead;
ListNode *slow=pHead;
while(fast!=nullptr&&fast->next!=nullptr)
{
fast=fast->next->next; //快指针走两步
slow=slow->next; //慢指针走一步
if(fast==slow) //快慢指针相遇
{
ListNode *p=pHead; //一个指针从起始位置
ListNode *q=fast; //一个指针从相遇位置
while(p!=q) //两个相遇即是环形入口位置
{
p=p->next;
q=q->next;
}
return p; //入口位置
}
}
return nullptr; //无环形
}
idea:使用hash法来存储已经遍历过的结点,当第一次出现重复的结点时,即为入口结点。
ListNode* EntryNodeOfLoop(ListNode* pHead)
{
unordered_set<ListNode *> uset; //存储已经遍历过的结点
while(pHead!=nullptr) //当链表指针不为空时
{
if(uset.find(pHead)!=uset.end()) //找到
return pHead; //入口位置
else //没找到
uset.insert(pHead); //加入
pHead=pHead->next; //下一个位置
}
return nullptr; //无环
}