给一个链表,若其中包含环,请找出该链表的环的入口结点,否则,输出null。
首先建立两个指针slow和fast都指向头指针,指针slow步长为1,fast步长为2。如果slow和fast在非空结点相遇,那么链表一定有环。
记len为环的长度,假设fast比slow提前x步进入环,y步之后两指针相遇
相遇前,fast走了2x+2y距离,slow走了y距离。相遇问题转化为求解这个同余方程。又因为slow步长为1,因此此方程必有解。所以用这种快慢指针的方式是可以检测是否存在环的。
此外,n必然是环长度len的整数倍。
记x1为环入口前的长度,x2和x3分别是slow和fast进入环之后走过的距离
在环中相遇,表示在环中位置相同,仍根据同余方程可得
n
m
o
d
l
e
n
=
0
n\quad mod\quad len = 0
nmodlen=0
在判断存在环之后,寻找环的入口,我们考虑如下过程。
从fast的位置向前走,那么一定会有一个岔路,这个岔路就是环的入口。根据环循环的特点,我们将这一过程中的移动方向倒转,分别从头节点和fast沿next移动,那么相遇的位置就是环的入口了
完整代码如下:
/*
public class ListNode {
int val;
ListNode next = null;
ListNode(int val) {
this.val = val;
}
}
*/
public class Solution {
public ListNode EntryNodeOfLoop(ListNode pHead)
{
if(pHead==null)
return null;
ListNode fast = pHead.next==null? null:pHead.next.next;
ListNode slow = pHead.next;
while(fast!=null && fast.next!=null && fast!=slow){
fast = fast.next.next;
slow = slow.next;
}
if(fast==null || fast.next==null)
return null;
ListNode e = fast;
ListNode iriguti = pHead;
while(e!=iriguti){
e = e.next;
iriguti = iriguti.next;
}
return e;
}
}