题目描述
描述:在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P mod 1000000007。
数据范围:
对于 50% 的数据, size≤104。
对于 100% 的数据, size≤105。
数组中所有数字的值满足 0≤val≤109。
要求:空间复杂度 O(n),时间复杂度 O(nlogn)。
输入描述:题目保证输入的数组中没有的相同的数字。
输入:[1,2,3,4,5,6,7,0]
返回值:7
输入:[1,2,3]
返回值:0
解题思路
数组中的逆序对:最直观的想法是,二层循环,使用变量i遍历数组表示当前元素,使用变量j遍历数组表示当前元素在当前轮次中对应的后续元素,然后判断data[i]是否大于data[j],如果是则将res加一,并对应模以1000000007,最后返回res即可。(超时)
int InversePairs(vector<int> data) {
int res=0;
for(int i=0;i<data.size();i++)
{
for(int j=i+1;j<data.size();j++)
{
if(data[i]>data[j])
res=(res+1)%1000000007;
}
}
return res;
}
优化:使用归并排序统计法。归并排序是先分后并:分即先递归的将一个数组分成两个子数组,两个子数组分成四个子数组,依次往下分直到不能再分为止;并即从最小的数组开始按照顺序合并,从小到大排序或者从大到小排序,依次向上合并,最后得到合并完的顺序数组;归并统计法即在合并数组的时候,当发现右边元素小于左边元素,则直接求出当前产生的逆序对个数,因为每一个合并后的子数组都是有序的。归并排序的时间复杂度是O(nlog(n)),空间复杂度是O(n)。
int res=0;
void merge(vector<int> &data,int left,int mid,int right)
{
//i指向左子数组 j指向右子数组 k指向临时数组
int i=left,j=mid+1,k=0;
//临时数组为两个子数组加起来的长度
vector<int> temp(right-left+1);
//子数组均不越界
while(i<=mid&&j<=right)
{
//左子数组小于等于右子数组
if(data[i]<=data[j])
temp[k++]=data[i++];
//左子数组大于右子数组 产生逆序对
else
{
temp[k++]=data[j++];
res=(res+(mid-i+1))%1000000007;
}
}
//左子数组还有元素
while(i<=mid)
temp[k++]=data[i++];
//右子数组还有元素
while(j<=right)
temp[k++]=data[j++];
//原数组指定位置从left开始
int p=left;
//将临时数组中的元素放到原数组指定位置
for(int num:temp)
data[p++]=num;
}
void mergeSort(vector<int> &data,int left,int right)
{
//数组不可再分则返回
if(left>=right)
return;
//寻找数组中点 为了防止越界 等价于 (left+right)/2
int mid=left+(right-left)/2;
//递归得到左子数组
mergeSort(data, left, mid);
//递归得到右子数组
mergeSort(data, mid+1, right);
//合并
merge(data,left,mid,right);
}
int InversePairs(vector<int> data)
{
//长度小于2则无逆序对
if(data.size()<2)
return 0;
//归并统计法
mergeSort(data,0,data.size()-1);
return res;
}