【剑指 Offer】剑指 Offer 07. 重建二叉树

算法汇总

以下是所有算法汇总,包括GitHub源码地址链接:力扣算法练习汇总(持续更新…)

题目

剑指 Offer 07. 重建二叉树
在这里插入图片描述

关键点

1、
2、

代码

1.解题方法 - 递归

思路

LeetCode官方思路

代码

public class Jz_07 {
    private Map<Integer, Integer> indexMap;
    public TreeNode myBuildTree(int[] preorder, int[] inorder, int preorder_left, int preorder_right, int inorder_left, int inorder_right) {

        if (preorder_left > preorder_right) {
            return null;
        }

        // 记录前序数组根节点索引。    前序遍历中的第一个节点就是根节点
        int preorder_root = preorder_left;
        // 记录中序数组跟节点索引。    在中序遍历中定位根节点
        int inorder_root = indexMap.get(preorder[preorder_root]);
        // 记录左子树节点个数。       得到左子树中的节点数目
        int size_left_subtree = inorder_root - inorder_left;

        // 先把根节点建立出来
        TreeNode root = new TreeNode(preorder[preorder_root]);

        // 递归地构造左子树,并连接到根节点
        // 先序遍历中「从 左边界+1 开始的 size_left_subtree」个元素就对应了中序遍历中「从 左边界 开始到 根节点定位-1」的元素
        // (前序数组,中序数组,前序数组最左索引,前序数组最右索引,中序数组最左索引,中序数组最右索引)。 注意:是索引。
        root.left = myBuildTree(preorder, inorder, preorder_left + 1, preorder_left + size_left_subtree, inorder_left, inorder_root - 1);
        // 递归地构造右子树,并连接到根节点
        // 先序遍历中「从 左边界+1+左子树节点数目 开始到 右边界」的元素就对应了中序遍历中「从 根节点定位+1 到 右边界」的元素
        // (前序数组,中序数组,前序数组最左索引,前序数组最右索引,中序数组最左索引,中序数组最右索引)。 注意:是索引。
        root.right = myBuildTree(preorder, inorder, preorder_left + size_left_subtree + 1, preorder_right, inorder_root + 1, inorder_right);
        return root;
    }

    public TreeNode buildTree(int[] preorder, int[] inorder) {
        int n = preorder.length;
        // 构造哈希映射,帮助我们快速定位根节点
        indexMap = new HashMap<Integer, Integer>();
        for (int i = 0; i < n; i++) {
            indexMap.put(inorder[i], i);
        }
        //(前序数组,中序数组,前序数组最左索引,前序数组最右索引,中序数组最左索引,中序数组最右索引)。 注意:是索引。
        return myBuildTree(preorder, inorder, 0, n - 1, 0, n - 1);
    }

}

时间和空间复杂度

  • 时间复杂度:O(n),其中 n 是树中的节点个数。

  • 空间复杂度:O(n),除去返回的答案需要的 O(n) 空间之外,我们还需要使用O(n) 的空间存储哈希映射,以及 O(h)(其中 h 是树的高度)的空间表示递归时栈空间。这里 h < n,所以总空间复杂度为 O(n)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@来杯咖啡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值