算法汇总
以下是所有算法汇总,包括GitHub源码地址链接:力扣算法练习汇总(持续更新…)
题目
关键点
1、
2、
代码
1.解题方法 - 递归
思路
代码
public class Jz_07 {
private Map<Integer, Integer> indexMap;
public TreeNode myBuildTree(int[] preorder, int[] inorder, int preorder_left, int preorder_right, int inorder_left, int inorder_right) {
if (preorder_left > preorder_right) {
return null;
}
// 记录前序数组根节点索引。 前序遍历中的第一个节点就是根节点
int preorder_root = preorder_left;
// 记录中序数组跟节点索引。 在中序遍历中定位根节点
int inorder_root = indexMap.get(preorder[preorder_root]);
// 记录左子树节点个数。 得到左子树中的节点数目
int size_left_subtree = inorder_root - inorder_left;
// 先把根节点建立出来
TreeNode root = new TreeNode(preorder[preorder_root]);
// 递归地构造左子树,并连接到根节点
// 先序遍历中「从 左边界+1 开始的 size_left_subtree」个元素就对应了中序遍历中「从 左边界 开始到 根节点定位-1」的元素
// (前序数组,中序数组,前序数组最左索引,前序数组最右索引,中序数组最左索引,中序数组最右索引)。 注意:是索引。
root.left = myBuildTree(preorder, inorder, preorder_left + 1, preorder_left + size_left_subtree, inorder_left, inorder_root - 1);
// 递归地构造右子树,并连接到根节点
// 先序遍历中「从 左边界+1+左子树节点数目 开始到 右边界」的元素就对应了中序遍历中「从 根节点定位+1 到 右边界」的元素
// (前序数组,中序数组,前序数组最左索引,前序数组最右索引,中序数组最左索引,中序数组最右索引)。 注意:是索引。
root.right = myBuildTree(preorder, inorder, preorder_left + size_left_subtree + 1, preorder_right, inorder_root + 1, inorder_right);
return root;
}
public TreeNode buildTree(int[] preorder, int[] inorder) {
int n = preorder.length;
// 构造哈希映射,帮助我们快速定位根节点
indexMap = new HashMap<Integer, Integer>();
for (int i = 0; i < n; i++) {
indexMap.put(inorder[i], i);
}
//(前序数组,中序数组,前序数组最左索引,前序数组最右索引,中序数组最左索引,中序数组最右索引)。 注意:是索引。
return myBuildTree(preorder, inorder, 0, n - 1, 0, n - 1);
}
}
时间和空间复杂度
-
时间复杂度:O(n),其中 n 是树中的节点个数。
-
空间复杂度:O(n),除去返回的答案需要的 O(n) 空间之外,我们还需要使用O(n) 的空间存储哈希映射,以及 O(h)(其中 h 是树的高度)的空间表示递归时栈空间。这里 h < n,所以总空间复杂度为 O(n)。