搭建深度学习框架(六):实现LSTM网络的搭建

本文档介绍了LSTM网络的实现原理,并提供了基于个人硕士论文的公式推导实现。内容涵盖LSTM细胞的门控机制,以及网络的前馈和反向传播过程。同时,展示了自定义LSTM解决时间序列回归问题的代码,对比了与PyTorch框架下搭建网络的性能差距,指出未优化的几个方面。
摘要由CSDN通过智能技术生成

上一节已经实现了MLP网络的搭建、运用和框架的发布,这一节将实现LSTM网络的搭建和运用。
代码下载地址:xhpxiaohaipeng/xhp_flow_frame
1.LSTM的实现原理
本人在我的硕士毕业论文中已经对LSTM的实现原理做了具体分析和公式推导,本文的LSTM代码就是依据毕业论文内的公式推导实现的,有兴趣的可以下载进行查看,这里不做具体分析,毕业论文下载链接(知网可能下不到):基于LSTM的动态环境车辆轨迹预测研究
主要核心内容可参考如下:
(1)LSTM细胞,主要包括三个门,遗忘门、输入门,输出门。
LSTM细胞
单个LSTM细胞前馈过程如下:
(I).遗忘门

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能学习者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值