一、了解LSTM
1. 核心思想
首先,LSTM 是 RNN(循环神经网络)的变体。它通过引入细胞状态 C(t) 贯穿于整个网络模型,达到长久记忆的效果,进而解决了 RNN 的长期依赖问题。
2. 思维导图
每个LSTM层次都有三个重要的门结构,从前往后依次是遗忘门(forget gate layer)、输入门(input gate layer)、输出门(output gate layer)。
还有两个重要的状态,分别是细胞状态(cell state)、隐藏状态(hidden state),即图示中的 C(t) 和 h(t) 。其中细胞状态不仅记忆某个时间步的信息,而是对整个时间序列保持较为稳定的记忆,是一种长期 “记忆信息” 。对于隐藏状态来说,它更多地关注当前时间步以及上一个时间步的输出,是一种短期 “记忆信息” 。
具体内容如下面思维导图所示:
二、利用pytorch构建LSTM
1. 构造神经网络模型
1.1 LSTM层
self.lstm