图像分类:AlexNet网络、五分类 flower 数据集、pytorch


代码来源: 使用pytorch搭建AlexNet并训练花分类数据集

一、代码结构

在这里插入图片描述
        

二、数据集的处理

2.1 数据集的下载和切分:split_data.py

"""
视频教程:https://www.bilibili.com/video/BV1p7411T7Pc/?spm_id_from=333.788
flower数据集为5分类数据集,共有 {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4} 5个分类。

该程序用于将数据集切分为训练集和验证集,使用步骤如下:
(1)在"split_data.py"的同级路径下创建新文件夹"flower_data"
(2)点击链接下载花分类数据集 http://download.tensorflow.org/example_images/flower_photos.tgz
(3)解压数据集到flower_data文件夹下
(4)执行"split_data.py"脚本自动将数据集划分为训练集train和验证集val

切分后的数据集结构:
├── split_data.py 
├── flower_data
       ├── flower_photos.tgz (下载的未解压的原始数据集)
       ├── flower_photos(解压的数据集文件夹,3670个样本)  
       ├── train(生成的训练集,3306个样本)  
       └── val(生成的验证集,364个样本) 
"""""


import os
from shutil import copy, rmtree
import random


def mk_file(file_path: str):
    if os.path.exists(file_path):
        # 如果文件夹存在,则先删除原文件夹在重新创建
        rmtree(file_path)
    os.makedirs(file_path)


def main():
    random.seed(0)

    # 将数据集中10%的数据划分到验证集中
    split_rate = 0.1

    # 指向你解压后的flower_photos文件夹
    cwd = os.getcwd()
    data_path = os.path.join(cwd, "flower_data/flower_photos/flower_photos")
    data_root=os.path.join(cwd, "flower_data")
    origin_flower_path = os.path.join(data_path, "")
    assert os.path.exists(origin_flower_path), "path '{}' does not exist.".format(origin_flower_path)

    flower_class = [cla for cla in os.listdir(origin_flower_path)
                    if os.path.isdir(os.path.join(origin_flower_path, cla))]

    # 建立保存训练集的文件夹
    train_root = os.path.join(data_root, "train")
    mk_file(train_root)
    for cla in flower_class:
        # 建立每个类别对应的文件夹
        mk_file(os.path.join(train_root, cla))

    # 建立保存验证集的文件夹
    val_root = os.path.join(data_root, "val")
    mk_file(val_root)
    for cla in flower_class:
        # 建立每个类别对应的文件夹
        mk_file(os.path.join(val_root, cla))

    for cla in flower_class:
        cla_path = os.path.join(origin_flower_path, cla)
        images = os.listdir(cla_path)
        num = len(images)
        # 随机采样验证集的索引
        eval_index = random.sample(images, k=int(num*split_rate))
        for index, image in enumerate(images):
            if image in eval_index:
                # 将分配至验证集中的文件复制到相应目录
                image_path = os.path.join(cla_path, image)
                new_path = os.path.join(val_root, cla)
                copy(image_path, new_path)
            else:
                # 将分配至训练集中的文件复制到相应目录
                image_path = os.path.join(cla_path, image)
                new_path = os.path.join(train_root, cla)
                copy(image_path, new_path)
            print("\r[{}] processing [{}/{}]".format(cla, index+1, num), end="")  # processing bar
        print()

    print("processing done!")


if __name__ == '__main__':
    main()

2.2 数据集的加载:dataset.py

import os
import json
import torch
from torchvision import transforms, datasets


def dataset(batch_size):
    train_path = "flower_data/train"
    val_path = "flower_data/val"
    assert os.path.exists(train_path), "{} path does not exist.".format(train_path)

    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using {} dataloader workers every process'.format(nw))

    """
    数据预处理,训练集做随机裁剪和随机翻转用来数据增强
    RandomResizedCrop(224) 表示先随机裁剪为不同的大小和宽高比,然后缩放为(224,224)大小
    RandomHorizontalFlip() 表示随机水平翻转(即左右翻转),默认概率为 0.5
    """

    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
        "val": transforms.Compose([transforms.Resize((224, 224)),   # cannot 224, must (224, 224)
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}

    """
    torchvision.datasets.ImageFolder 适用于加载特定存储格式的数据集,具体使用可参考博客:
    https://blog.csdn.net/qq_39507748/article/details/105394808
    """

    train_dataset = datasets.ImageFolder(root=train_path,transform=data_transform["train"])
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size,
                                               shuffle=True, num_workers=nw)
    validate_dataset = datasets.ImageFolder(root=val_path, transform=data_transform["val"])
    valid_loader = torch.utils.data.DataLoader(validate_dataset, batch_size=batch_size,
                                               shuffle=True, num_workers=nw)
    train_num = len(train_dataset)
    val_num = len(validate_dataset)
    print(f"using {train_num} images for training, {val_num} images for valid.")

    flower_class_id = train_dataset.class_to_idx
    # 按照不同分类数据集的排列顺序获得 train_dataset中图片对应的分类,得到字典格式:
    # {'daisy': 0, 'dandelion': 1, 'roses': 2, 'sunflower': 3, 'tulips': 4}
    # 雏菊           蒲公英           玫瑰         向日葵           郁金香
    # class_to_idx属性是通过.ImageFolder() 方法加载数据集才有的,并不是所有dataset都有该属性

    cla_dict = dict((val, key) for key, val in flower_class_id.items())
    # 将 dict中的 key和 value互换:
    # {0: 'daisy', 1: 'dandelion', 2: 'roses', 3: 'sunflowers', 4: 'tulips'}

    json_str = json.dumps(cla_dict, indent=4)
    """
    json.dumps() 将 python对象转换成 json对象,生成一个字符串。
    indent=4 表示缩进4个空格,方便阅读。
    json_str的内容为:
        {
            "0": "daisy",
            "1": "dandelion",
            "2": "roses",
            "3": "sunflowers",
            "4": "tulips"
        }
    """

    # 将字符串写入json文件,便于predict时使用。python只能将字符串格式的数据写入文件。
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)

    return train_loader,valid_loader,val_num

2.3 数据集图片可视化:imgs_vasual.py

"""
图片可视化函数,用于imshow多张图片,并输出每张图片对应的label
"""""

import os
import torch
from torchvision import transforms, datasets, utils
import matplotlib.pyplot as plt
import numpy as np


def imgs_imshow(batch_size):
    # 产生数据集迭代器
    train_path = "flower_data/train"
    assert os.path.exists(train_path), "{} path does not exist.".format(train_path)
    tramsform=transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),
                                 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
    train_dataset = datasets.ImageFolder(root=train_path, transform=tramsform)
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size,
                                               shuffle=True, num_workers=0)
    # windows中只能设置 num_workers=0,即单个线程处理数据集。Linux系统中可以设置多个 num_workers

    data_iter = iter(train_loader)
    image, label = data_iter.next()    # 每次产生batch_size张图片

    # 产生图片和对应 label
    flower_list = train_dataset.class_to_idx
    cla_dict = dict((val, key) for key, val in flower_list.items())
    print('   '.join('%5s' % cla_dict[label[j].item()] for j in range(batch_size)))

    img = utils.make_grid(image)     # make_grid() 用于将多张图像拼成一张
    img = img / 2 + 0.5   # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()


if __name__ == '__main__':
    imgs_imshow(batch_size=6)

        

三、AlexNet介绍及网络搭建:model.py

3.1 AlexNet网络结构

在这里插入图片描述
本程序中输入图片的尺寸是 224*224,输出为5分类而不是1000分类,其他数据均为图中的数据。

3.2 AlexNet网络的亮点

(1)首次利用GPU进行网络加速训练,作者用了两块GPU进行并行训练。

(2)使用了ReLU激活函数,而不是传统的Sigmoid激活函数以及Tanh激活函数。

(3) 使用了LRN局部响应归一化(Local Response Normalization)。本程序中没有用LRN,因为这个方法现在已经用的很少了。

(4)在全连接层的前两层中使用了Dropout随机失活神经元操作,以减少过拟合。

3.3 网络搭建

import torch.nn as nn

"""
本程序中没有使用LRN归一化,因为这个方法现在已经用的很少了。
"""

class AlexNet(nn.Module):
    def __init__(self,class_num=1000,init_weights=False):
        super(AlexNet,self).__init__()
        self.dropout=0.1

        # 提取图像特征
        self.features=nn.Sequential(
            nn.ZeroPad2d((2, 1, 2, 1)),
            # nn.ZeroPad2d 的填充顺序是左右上下

            nn.Conv2d(in_channels=3,out_channels=96,kernel_size=11,stride=4),
            # 图像数据通道存储顺序为 [N,C,H,W],即[batch_size,channels,height,weight]
            # input[bsz,3, 224, 224]    output[bsz,96, 55, 55]
            # output_size=(W-K+P)/S+1,其中W*W是输入图像尺寸,K是kernel_size,P是padding的行/列数量,S是stride

            nn.ReLU(inplace=True),
            # inplace=True 表示对上一层的数据进行修改,用新数据覆盖旧数据,不存储旧数据,可以节省内存。默认值为 inplace=False
            # 激活函数不改变数据尺寸

            nn.MaxPool2d(kernel_size=3,stride=2),          # output[bsz, 96, 27, 27]
            # pooling层不改变channel,只改变H和W

            nn.Conv2d(96,256,kernel_size=5,padding=2),     # output[bsz, 256, 27, 27]
            # padding=2 表示四边都 padding 两行或两列 0 像素值

            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3,stride=2),          # output[bsz, 256, 13, 13]
            nn.Conv2d(256,384,kernel_size=3,padding=1),    # output[bsz, 384,13,13]
            nn.ReLU(inplace=True),
            nn.Conv2d(384,256,kernel_size=3,padding=1),    # output[bsz, 256,13,13]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3,stride=2),          # output[bsz, 256,6,6]
        )

        # 分类器,在全连接层的前两层使用了 dropout
        self.classifier=nn.Sequential(
            nn.Dropout(p=self.dropout),
            nn.Linear(in_features=9216,out_features=4096),    # input[bsz,9216]    output[bsz,4096]
            nn.ReLU(inplace=True),
            nn.Dropout(p=self.dropout),
            nn.Linear(in_features=4096, out_features=4096),   # output[bsz,4096]
            nn.ReLU(inplace=True),
            nn.Linear(in_features=4096, out_features=class_num),   # output[bsz,class_num]
        )

        # 初始化权重参数
        if init_weights:
            self._initialize_weights()

    def forward(self,x):
        x=self.features(x)
        x=x.view(-1,256*6*6)
        x=self.classifier(x)
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)    # 用正态分布N(0,0.01)对weight初始化
                nn.init.constant_(m.bias, 0)          # 将bias初始化为0

    """
    _initialize_weights()方法的解释:
    self.modules():  Returns an iterator over all modules in the network,即遍历网络中的所有层,并返回一个迭代器。
    for m in self.modules(): 遍历网络中的每一层
    if isinstance(m, nn.Conv2d): 判断m是否是 nn.Conv2d层
    其实并不需要用_initialize_weights()方法进行初始化,因为pytorch会默认以 nn.init.kaiming_normal_() 进行初始化。
    """

        

四、训练及保存精度最高的网络参数:train.py

import torch
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm

from model import AlexNet
from dataset import dataset


def train(batch_size, epochs, lr=0.001):
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))

    train_loader, valid_loader, val_num = dataset(batch_size=batch_size)
    model = AlexNet(class_num=5, init_weights=True)
    model.to(device)
    loss_function = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=lr)
    # model.parameters()表示优化网络中所有的可训练参数

    save_path = './AlexNet.pth'
    best_acc = 0.0
    train_steps = len(train_loader)
    for epoch in range(epochs):
        # train
        model.train()    # 启用 dropout和 Batch Normalization
        running_loss = 0.0
        train_bar = tqdm(train_loader)     # 将 train_loader设置为进度条对象
        for step, (images, labels) in enumerate(train_bar):
            optimizer.zero_grad()
            outputs = model(images.to(device))
            loss = loss_function(outputs, labels.to(device))
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
            train_bar.desc = f"train epoch [{epoch+1}/{epochs}]   loss= {loss:.3f}"

        # validate
        model.eval()    # 不启用 dropout和 Batch Normalization
        acc = 0.0    # accumulate accurate number / epoch
        with torch.no_grad():
            val_bar = tqdm(valid_loader)
            for val_data in val_bar:
                val_images, val_labels = val_data
                outputs = model(val_images.to(device))
                predict_y = torch.max(outputs, dim=1)[1]
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()
                # torch.eq() 用于对两个Tensor进行逐元素比较,若相同位置的两个元素相同,则返回1;否则返回0。

        val_accurate = acc / val_num
        print('[epoch %d]   train_loss= %.3f   val_accuracy= %.3f' %
              (epoch + 1, running_loss / train_steps, val_accurate))

        # 保存验证精度最高的模型
        if val_accurate > best_acc:
            best_acc = val_accurate
            torch.save(model.state_dict(), save_path)

    print('Finished Training')


if __name__ == '__main__':
    train(batch_size=16, epochs=10, lr=0.0002)

训练结果(没有跑完):
在这里插入图片描述
        

五、用数据集之外的图片进行测试:predict.py

import os
import json
import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt

from model import AlexNet


def predict():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    data_transform = transforms.Compose(
        [transforms.Resize((224, 224)),
         transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    # load image
    img_path = "./tulip.png"      # 用数据集之外的图片进行测试
    assert os.path.exists(img_path), f"file: '{img_path}' dose not exist."
    img = Image.open(img_path)
    plt.imshow(img)               # 在扩维之前 imshow
    img = data_transform(img)     # [C, H, W],图片只有三个维度,没有batch_size的维度
    img = torch.unsqueeze(img, dim=0)     # 扩维为 [N, C, H, W]

    # read class_indict
    json_path = './class_indices.json'
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)
    json_file = open(json_path, "r")
    class_indict = json.load(json_file)

    # load model weights
    model = AlexNet(class_num=5).to(device)
    weights_path = "./AlexNet.pth"
    assert os.path.exists(weights_path), f"file: '{weights_path}' dose not exist."
    model.load_state_dict(torch.load(weights_path))

    # predict class
    model.eval()
    with torch.no_grad():
        output = torch.squeeze(model(img.to(device))).cpu()
        # 维度压缩,去掉batch_size维度
        # output = tensor([-2.0011, -4.6823,  2.4246, -2.3200,  3.8126])

        predict = torch.softmax(output, dim=0)
        # predict = tensor([2.3797e-03, 1.6297e-04, 1.9888e-01, 1.7299e-03, 7.9685e-01])

        predict_cla = torch.argmax(predict).item()
        # 取出predict中最大值的索引(索引为tensor),并将索引转为数字
        # predict_cla = 4

    # imshow img and class
    img_class = class_indict[str(predict_cla)]
    img_preb=predict[predict_cla].item()
    print_res = f"class: {img_class}    prob: {img_preb:.3}"
    plt.title(print_res)    # 表头名称
    for i in range(len(predict)):
        print(f"class: {class_indict[str(i)]:12}   prob: {predict[i].item():.3}")
    plt.show()


if __name__ == '__main__':
    predict()

测试结果:

class: daisy          prob: 0.00238
class: dandelion      prob: 0.000163
class: roses          prob: 0.199
class: sunflowers     prob: 0.00173
class: tulips         prob: 0.797

测试图片及类别预测:

在这里插入图片描述

  • 7
    点赞
  • 58
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
你想要了解关于AlexNet网络五分flower数据集上的图像分类任务的pytorch实现,对吧?我可以帮你解答这个问题。 首先,你需要准备好flower数据集,并将其划分为训练集和测试集。接下来,你可以使用PyTorch框架来实现AlexNet网络。 在PyTorch中,你可以使用torchvision库来加载和预处理图像数据集。你可以使用transforms模块来定义数据预处理的操作,例如随机裁剪、归一化等。然后,你可以使用ImageFolder来加载数据集,并将其转换为可供AlexNet使用的格式。 在构建AlexNet网络方面,你可以使用torch.nn库中的相关模块来构建网络结构。AlexNet包含多个卷积层、池化层和全连接层。你可以使用nn.Sequential来定义网络的层次结构。 接下来,你需要定义损失函数和优化器。对于多分类任务,你可以使用交叉熵损失函数(CrossEntropyLoss)。对于优化器,你可以选择Adam或者SGD等常用的优化算法。 在训练过程中,你需要定义训练循环,并在每个epoch中进行前向传播、计算损失、反向传播和优化器更新等操作。 最后,你可以使用测试集对训练好的模型进行评估,并计算分类准确率等指标。 你可以将上述代码保存为一个.ipynb文件,并在Jupyter Notebook或者其他支持.ipynb文件的环境中运行。 希望这些信息对你有所帮助!如果你有任何进一步的问题,请随时提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ctrl A_ctrl C_ctrl V

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值