1099 Build A Binary Search Tree (搜索二叉树赋值并标记左右)

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
Both the left and right subtrees must also be binary search trees.
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.

在这里插入图片描述

输入描述:
Each input file contains one test case. For each case, the first line gives a positive integer N (<=100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format “left_index right_index”, provided that the nodes are numbered from 0 to N-1, and 0 is always the root. If one child is missing, then -1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.

输出描述:
For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.

输入例子:
9
1 6
2 3
-1 -1
-1 4
5 -1
-1 -1
7 -1
-1 8
-1 -1
73 45 11 58 82 25 67 38 42

输出例子:
58 25 82 11 38 67 45 73 42

题解

每一个节点存储的分别是左,右子节点的数组序列。
从上到下,从左到右输出节点的值。
思路
对搜索二叉树进行中序遍历,会得到从小到大排列的值。
也可以逆向思路对搜索二叉树进行中序遍历然后赋值。
神来之笔:
对于每个节点使用index进行编号,可以分出左右节点然后进行排列提取。

#include<iostream>
#include<algorithm>
using namespace std;
struct node{
	long long data,index,l,r,level;
}a[150];
long long cnt;
long long b[150];
void def(long long i,long long index,long long level){
	if(a[i].l==-1&&a[i].r==-1){
		a[i]={b[cnt++],index,a[i].l,a[i].r,level};
	}
	// 中序遍历从小到大依次赋值给a数组。 
	else{
		// 此处保证左节点肯定比右节点的序号小。 
		if(a[i].l!=-1)def(a[i].l,index*2+1,level+1);
		a[i]={b[cnt++],index,a[i].l,a[i].r,level};
		if (a[i].r!=-1) def(a[i].r, index * 2 + 2, level + 1);
	}
}
bool cmp(node a,node b){
	if(a.level!=b.level)return a.level<b.level;
	else return a.index<b.index;
}
int main(){
	long long n;
	cin>>n;
	for(int i=0;i<n;i++)
	cin>>a[i].l>>a[i].r;
	for(int i=0;i<n;i++)
	cin>>b[i];
	sort(b,b+n);
	def(0,0,0);
	sort(a,a+n,cmp);
	for(int i=0;i<n;i++)
		if(i==0)
		cout<<a[i].data;
		else cout<<" "<<a[i].data;
		return 0;
} 
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页