题目:
一个长度为 n 的字符串 s,其中仅包含 ‘Q’, ‘W’, ‘E’, ‘R’ 四种字符。
如果四种字符在字符串中出现次数均为 n/4,则其为一个平衡字符串。
现可以将 s 中连续的一段子串替换成相同长度的只包含那四个字符的任意字符串,使其变为一个平衡字符串,问替换子串的最小长度?
如果 s 已经平衡则输出0。
Input:
一行字符表示给定的字符串s
Output:
一个整数表示答案
Examples:
Input1
QWER
Output1
0
Input2
QQWE
Output2
1
Input3
QQQW
Output3
2
Input4
QQQQ
Output4
3
Note
1<=n<=10^5
n是4的倍数
字符串中仅包含字符 ‘Q’, ‘W’, ‘E’ 和 ‘R’.
思路:
此题所求解答案为一个连续的区间,且区间左右端点的移动有明确的方向,所以在这里选择使用尺取法进行求解。
如果区间[L,R]符合不平衡字符串的条件,则区间[L,R+1]也一定符合条件,但对答案不一定有贡献,区间[L+1,R]则不一定符合条件。所以,如果[L,R]符合条件,则L++,如果[L,R]不符合条件,则R++。
使用record数组记录各个字符出现的次数,再将其与n/4进行比较,将小于n/4的置零,大于n/4的则减去n/4,最后相加就得到了要处理的最小字符串长度sum。如此,就可以进行尺取了,如果尺取得到的字符串中各个字符的出现次数都大于处理后的record中的字符出现次数,则说明满足条件,L++,否则R++,直到尺取得到字符串长度等于sum或者是尺取到达了字符串的尽头。
代码:
#include <iostream>
#include <string>
#include <algorithm>
using namespace std;
void changep(int* a, char p)
{
if (p == 'Q')
a[0]++;
if (p == 'W')
a[1]++;
if (p == 'E')
a[2]++;
if (p == 'R')
a[3]++;
}
void changem(int* a, char p)
{
if (p == 'Q')
a[0]--;
if (p == 'W')
a[1]--;
if (p == 'E')
a[2]--;
if (p == 'R')
a[3]--;
}
int slove(string s, int* record, int avg)
{
int ans = s.size(), n = s.size(), sum = 0, left = 0, right = 1;
int* rec = new int[4]();
for (int i = 0; i < 4; i++)
{
if (record[i] <= avg)
{
record[i] = 0;
}
else
{
record[i] -= avg;
sum += record[i];
}
}
if (sum == 0)
return 0;
for (int i = left; i <= right; i++)
changep(rec, s[i]);
while (right < n)
{
if (rec[0] >= record[0] && rec[1] >= record[1] && rec[2] >= record[2] && rec[3] >= record[3])
{
ans = min(ans, (right - left + 1));
changem(rec, s[left]);
left++;
}
else
{
right++;
if (right != n)
changep(rec, s[right]);
}
if (ans == sum)
break;
}
return ans;
}
int main()
{
int *record = new int[4]();
string s;
cin >> s;
int avg = s.size() / 4;
for (int i = 0; i < s.size(); i++)
changep(record, s[i]);
int ans = slove(s, record, avg);
cout << ans << endl;
return 0;
}