title: OpenCV-手势调节音量基础实现
OpenCV-手势调节音量基础实现
前言
接触谷歌开源库mediapipe结合之前学的OpenCV,做出的小程序
开源库yyds,拿来就可以用
代码实现
import math
import cv2
import mediapipe as mp
import time
# 打开计算机自带摄像头
import numpy as np
cap = cv2.VideoCapture(0)
mpHands = mp.solutions.hands
hands = mpHands.Hands() # 设置参数,详见 hands.py 中的 __init__
mpDraw = mp.solutions.drawing_utils # 将检测出的手上的标记点连接起来
# 定义时间用于后边的fps计算
pTime = 0
cTime = 0
temp1 = np.zeros(2)
temp2 = np.zeros(2)
while True:
success, img = cap.read()
img = cv2.flip(img, 1) # 图像翻转
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 将BGR格式图像转换为RGB
results = hands.process(imgRGB) # 对输入图像进行处理,探索图像中是否有手
# print(results.multi_hand_landmarks) # 如果有手,输出手所有0~20个标记点的比例坐标,如果没有,输出None
if results.multi_hand_landmarks:
for handLms in results.multi_hand_landmarks: # 捕捉画面中的每一只手
for id, lm in enumerate(handLms.landmark):
# print(id, lm)
h, w, c = img.shape
cx, cy = int(lm.x * w), int(lm.y * h) # 根据比例还原出每一个标记点的像素坐标
# print(id, cx, cy) # 根据手上标记点的id打印出其相应所在图像中中的像素位置
if id == 4: # 可以根据手上标记点的id获得任意id对应的标记点的信息
cv2.circle(img, (cx, cy), 10, (255, 0, 255), cv2.FILLED) # 这里加粗强调了大拇指上的一个标记点
temp1[0] = cx # 拇指顶点坐标
temp1[1] = cy
if id == 8: # 可以根据手上标记点的id获得任意id对应的标记点的信息
temp2[0] = cx # 食指顶点坐标
temp2[1] = cy
mpDraw.draw_landmarks(img, handLms, mpHands.HAND_CONNECTIONS) # 给画面中的每一只手进行标点、连线的操作
# 得到fps
cTime = time.time()
fps = 1 / (cTime - pTime)
pTime = cTime
# 计算食指和拇指的距离
l = math.sqrt(math.pow((temp1[0] - temp2[0]), 2) + math.pow((temp1[1] - temp2[1]), 2))
l = int(l)
print(l)
# 长度转换音量
if (l >= 30) and (l <= 190):
volume = 0.626 * l - 18.75
else:
volume = 0
print(volume)
# 画面上显示音量
cv2.putText(img, 'volume:' + str(int(volume)), (10, 150), cv2.FONT_ITALIC, 1, (0, 0, 255), 3)
# 在画面上显示fps
cv2.putText(img, 'FPS:' + str(int(fps)), (10, 70), cv2.FONT_ITALIC, 1, (0, 0, 255), 3)
cv2.imshow("Image", img)
key = cv2.waitKey(1) # 自动刷新
if key == 27:
break
cv2.destroyAllWindows()