此文档源自钱文品老师所著《Redis 深度历险:核心原理和应用实践》
Set
Redis 的集合相当于 Java 语言里面的 HashSet,它内部的键值对是无序的唯一的。它的内部实现相当于一个特殊的字典,字典中所有的 value 都是一个值 NULL。当集合中最后一个元素移除之后,数据结构自动删除,内存被回收。 set 结构可以用来存储活动中奖的用户 ID,因为有去重功能,可以保证同一个用户不会中奖两次。
> sadd books python
(integer) 1
> sadd bookspython # 重复
(integer) 0
> sadd books java golang
(integer) 2
> smembers books # 注意顺序,和插入的并不一致,因为 set 是无序的
1) "java"
2) "python"
3) "golang"
> sismember books java # 查询某个 value 是否存在,相当于 contains(o)
(integer) 1
> sismember books rust
(integer) 0
> scard books # 获取长度相当于 count()
(integer) 3
> spop books # 弹出一个
"java"
ZSet
zset 可能是 Redis 提供的最为特色的数据结构,它也是在面试中面试官最爱问的数据结构。它类似于 Java 的 SortedSet 和 HashMap 的结合体,一方面它是一个 set,保证了内部value 的唯一性,另一方面它可以给每个 value 赋予一个 score,代表这个 value 的排序权重。它的内部实现用的是一种叫着「跳跃列表」的数据结构。
zset 中最后一个 value 被移除后,数据结构自动删除,内存被回收。 zset 可以用来存粉丝列表,value 值是粉丝的用户 ID,score 是关注时间。我们可以对粉丝列表按关注时间进行排序。
zset 还可以用来存储学生的成绩,value 值是学生的 ID,score 是他的考试成绩。我们可以对成绩按分数进行排序就可以得到他的名次。
> zadd books 9.0 "think in java"
(integer) 1
> zadd books 8.9 "java concurrency"
(integer) 1
> zadd books 8.6 "java cookbook"
(integer) 1
> zrange books 0 -1 # 按 score 排序列出,参数区间为排名范围
1) "java cookbook"
2) "java concurrency"
3) "think in java"
> zrevrange books 0 -1 # 按 score 逆序列出,参数区间为排名范围
1) "think in java"
2) "java concurrency"
3) "java cookbook"
> zcard books # 相当于 count()
(integer) 3
> zscore books "java concurrency" # 获取指定 value 的 score
"8.9000000000000004" # 内部 score 使用 double 类型进行存储,所以存在小数点精度问题
> zrank books "java concurrency" # 排名
(integer) 1
> zrangebyscore books 0 8.91 # 根据分值区间遍历 zset
1) "java cookbook"
2) "java concurrency"
> zrangebyscore books -inf 8.91 withscores # 根据分值区间 (-∞, 8.91] 遍历 zset,同时返
回分值。inf 代表 infinite,无穷大的意思。
1) "java cookbook"
2) "8.5999999999999996"
3) "java concurrency"
4) "8.9000000000000004"
> zrem books "java concurrency" # 删除 value
(integer) 1
> zrange books 0 -1
1) "java cookbook"
2) "think in java"
跳跃列表
zset 内部的排序功能是通过「跳跃列表」数据结构来实现的,它的结构非常特殊,也比较复杂。
因为 zset 要支持随机的插入和删除,所以它不好使用数组来表示。我们先看一个普通的链表结构。
我们需要这个链表按照 score 值进行排序。这意味着当有新元素需要插入时,要定位到特定位置的插入点,这样才可以继续保证链表是有序的。通常我们会通过二分查找来找到插入点,但是二分查找的对象必须是数组,只有数组才可以支持快速位置定位,链表做不到,那该怎么办?
想想一个创业公司,刚开始只有几个人,团队成员之间人人平等,都是联合创始人。随着公司的成长,人数渐渐变多,团队沟通成本随之增加。这时候就会引入组长制,对团队进行划分。每个团队会有一个组长。开会的时候分团队进行,多个组长之间还会有自己的会议安排。公司规模进一步扩展,需要再增加一个层级 —— 部门,每个部门会从组长列表中推选出一个代表来作为部长。部长们之间还会有自己的高层会议安排。
跳跃列表就是类似于这种层级制,最下面一层所有的元素都会串起来。然后每隔几个元素挑选出一个代表来,再将这几个代表使用另外一级指针串起来。然后在这些代表里再挑出二级代表,再串起来。最终就形成了金字塔结构。 想想你老家在世界地图中的位置:亚洲- ->中国->安徽省->安庆市->枞阳县->汤沟镇->田间村->xxxx 号,也是这样一个类似的结构。
「跳跃列表」之所以「跳跃」,是因为内部的元素可能「身兼数职」,比如上图中间的这个元素,同时处于 L0、L1 和 L2 层,可以快速在不同层次之间进行「跳跃」。
定位插入点时,先在顶层进行定位,然后下潜到下一级定位,一直下潜到最底层找到合适的位置,将新元素插进去。你也许会问,那新插入的元素如何才有机会「身兼数职」呢?跳跃列表采取一个随机策略来决定新元素可以兼职到第几层。
首先 L0 层肯定是 100% 了,L1 层只有 50% 的概率,L2 层只有 25% 的概率,L3 层只有 12.5% 的概率,一直随机到最顶层 L31 层。绝大多数元素都过不了几层,只有极少数元素可以深入到顶层。列表中的元素越多,能够深入的层次就越深,能进入到顶层的概率就会越大。
延时队列
延时队列可以通过 Redis 的 zset(有序列表) 来实现。我们将消息序列化成一个字符串作为 zset 的 value,这个消息的到期处理时间作为 score,然后用多个线程轮询 zset 获取到期的任务进行处理,多个线程是为了保障可用性,万一挂了一个线程还有其它线程可以继续处理。因为有多个线程,所以需要考虑并发争抢任务,确保任务不能被多次执行。
import java.lang.reflect.Type;
import java.util.Set;
import java.util.UUID;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.TypeReference;
import redis.clients.jedis.Jedis;
public class RedisDelayingQueue<T> {
static class TaskItem<T> {
public String id;
public T msg;
}
// fastjson 序列化对象中存在 generic 类型时,需要使用 TypeReference
private Type TaskType = new TypeReference<TaskItem<T>>() { }.getType();
private Jedis jedis;
private String queueKey;
public RedisDelayingQueue(Jedis jedis, String queueKey) {
this.jedis = jedis;
this.queueKey = queueKey;
}
public void delay(T msg) {
TaskItem task = new TaskItem();
task.id = UUID.randomUUID().toString(); // 分配唯一的 uuid
task.msg = msg;
String s = JSON.toJSONString(task); // fastjson 序列化
jedis.zadd(queueKey, System.currentTimeMillis() + 5000, s); // 塞入延时队列 ,5s 后再试
}
public void loop() {
while (!Thread.interrupted()) {
// 只取一条
Set values = jedis.zrangeByScore(queueKey, 0, System.currentTimeMillis(), 0, 1);
if (values.isEmpty()) {
try {
Thread.sleep(500); // 歇会继续
}
catch (InterruptedException e) {
break;
}
continue;
}
String s = values.iterator().next();
if (jedis.zrem(queueKey, s) > 0) { // 抢到了
TaskItem task = JSON.parseObject(s, TaskType); // fastjson 反序列化
this.handleMsg(task.msg);
}
}
}
public void handleMsg(T msg) {
System.out.println(msg);
}
public static void main(String[] args) {
Jedis jedis = new Jedis();
RedisDelayingQueue queue = new RedisDelayingQueue<>(jedis, "q-demo");
Thread producer = new Thread() {
public void run() {
for (int i = 0; i < 10; i++) {
queue.delay("codehole" + i);
}
}
};
Thread consumer = new Thread() {
public void run() {
queue.loop();
}
};
producer.start();
consumer.start();
try {
producer.join();
Thread.sleep(6000);
consumer.interrupt();
consumer.join();
}
catch (InterruptedException e) {
}
}
}
「跳跃列表」内部结构
Redis 的 zset 是一个复合结构,一方面它需要一个 hash 结构来存储 value 和 score 的对应关系,另一方面需要提供按照 score 来排序的功能,还需要能够指定 score 的范围来获取 value 列表的功能,这就需要另外一个结构「跳跃列表」。
zset 的内部实现是一个 hash 字典加一个跳跃列表 (skiplist)。
基本结构
上图就是跳跃列表的示意图,图中只画了四层,Redis 的跳跃表共有 64 层,意味着最多可以容纳 2^64 次方个元素。每一个 kv 块对应的结构如下面的代码中的 zslnode 结构,kv header 也是这个结构,只不过 value 字段是 null 值——无效的,score 是Double.MIN_VALUE,用来垫底的。kv 之间使用指针串起来形成了双向链表结构,它们是有序 排列的,从小到大。不同的 kv 层高可能不一样,层数越高的 kv 越少。同一层的 kv 会使用指针串起来。每一个层元素的遍历都是从 kv header 出发。
struct zslnode {
string value;
double score;
zslnode*[] forwards; // 多层连接指针
zslnode* backward; // 回溯指针
}
struct zsl {
zslnode* header; // 跳跃列表头指针
int maxLevel; // 跳跃列表当前的最高层
map<string, zslnode*> ht; // hash 结构的所有键值对
}
查找过程
设想如果跳跃列表只有一层会怎样?插入删除操作需要定位到相应的位置节点 (定位到最后一个比「我」小的元素,也就是第一个比「我」大的元素的前一个),定位的效率肯定比较差,复杂度将会是 O(n),因为需要挨个遍历。也许你会想到二分查找,但是二分查找的结构只能是有序数组。跳跃列表有了多层结构之后,这个定位的算法复杂度将会降到O(lg(n))。
如图所示,我们要定位到那个紫色的 kv,需要从 header 的最高层开始遍历找到第一个节点 (最后一个比「我」小的元素),然后从这个节点开始降一层再遍历找到第二个节点 (最后一个比「我」小的元素),然后一直降到最底层进行遍历就找到了期望的节点 (最底层的最后一个比我「小」的元素)。
我们将中间经过的一系列节点称之为「搜索路径」,它是从最高层一直到最底层的每一层最后一个比「我」小的元素节点列表。
有了这个搜索路径,我们就可以插入这个新节点了。不过这个插入过程也不是特别简单。因为新插入的节点到底有多少层,得有个算法来分配一下,跳跃列表使用的是随机算法。
随机层数
对于每一个新插入的节点,都需要调用一个随机算法给它分配一个合理的层数。直观上期望的目标是 50% 的 Level1,25% 的 Level2,12.5% 的 Level3,一直到最顶层 2^-63,因为这里每一层的晋升概率是 50%。
/* Returns a random level for the new skiplist node we are going to create.
* The return value of this function is between 1 and ZSKIPLIST_MAXLEVEL
* (both inclusive), with a powerlaw-alike distribution where higher
* levels are less likely to be returned. */
int zslRandomLevel(void) {
int level = 1;
while ((random()&0xFFFF) < (ZSKIPLIST_P * 0xFFFF))
level += 1;
return (level<ZSKIPLIST_MAXLEVEL) ? level : ZSKIPLIST_MAXLEVEL;
}
不过 Redis 标准源码中的晋升概率只有 25%,也就是代码中的 ZSKIPLIST_P 的值。所以官方的跳跃列表更加的扁平化,层高相对较低,在单个层上需要遍历的节点数量会稍多一点。
也正是因为层数一般不高,所以遍历的时候从顶层开始往下遍历会非常浪费。跳跃列表会记录一下当前的最高层数 maxLevel,遍历时从这个 maxLevel 开始遍历性能就会提高很多。
如果 score 值都一样呢?
在一个极端的情况下,zset 中所有的 score 值都是一样的,zset 的查找性能会退化为O(n) 么?Redis 作者自然考虑到了这一点,所以 zset 的排序元素不只看 score 值,如果score 值相同还需要再比较 value 值 (字符串比较)。
元素排名是怎么算出来的?
前面我们啰嗦了一堆,但是有一个重要的属性没有提到,那就是 zset 可以获取元素的排名 rank。那这个 rank 是如何算出来的?如果仅仅使用上面的结构,rank 是不能算出来的。Redis 在 skiplist 的 forward 指针上进行了优化,给每一个 forward 指针都增加了 span 属性,span 是「跨度」的意思,表示从前一个节点沿着当前层的 forward 指针跳到当前这个节点中间会跳过多少个节点。Redis 在插入删除操作时会小心翼翼地更新 span 值的大小。
struct zslforward {
zslnode* item;
long span; // 跨度
}
struct zsl {
String value;
double score;
zslforward*[] forwards; // 多层连接指针
zslnode* backward; // 回溯指针
}
这样当我们要计算一个元素的排名时,只需要将「搜索路径」上的经过的所有节点的跨度 span 值进行叠加就可以算出元素的最终 rank 值。