W.A.L.T阅读笔记【文生视频模型】

W.A.L.T是一个由Stanford、Google Research和Georgia Tech提出的创新模型,它使用Transformer和扩散建模生成逼真的视频。通过因果编码器将图像和视频联合压缩到统一潜在空间,利用窗口注意力架构增强记忆力和训练效率。在UCF-101、Kinetics-600和ImageNet上实现了最佳性能,并且能够生成3D一致性的360度视频。


1. 基本信息

  • 题目:Photorealistic Video Generation with Diffusion Models
  • 时间:2023.12
  • 发表:暂无
  • 机构:Stanford; Google Research; Georgia Institute of Technology
  • 作者:Agrim Gupta等
  • 链接直达:paper/project
  • 关键词:AIGC,text-to-video, img-to-video
  • 概括:基于Transformer的方法,文生视频。
  • 摘要翻译:我们介绍了W.A.L.T,这是一种基于Transformer的方法,通过扩散建模生成逼真的视频。我们的方法有两个关键的设计决策。首先,我们使用causal encoder在一个统一的潜在空间内联合压缩图像和视频,从而实现跨模态的训练和生成。其次,为了提高记忆力和训练效率,我们使用为空间和时空联合生成建模量身定制的window attention architecture。总而言之,这些设计决策使我们能够在已建立的视频(UCF-101 和 Kinetics-600)和图像 (ImageNet) 生成基准测试上实现最先进的性能,而无需使用无分类器的指导。最后,我们还训练了三个模型的级联,用于文本到视频的生成任务,包括一个基本的潜在视频扩散模型和两个视频超分辨率扩散模型,以每秒 8 帧的速度生成 512 × 896 分辨率的视频。

2. 理解(个人初步理解,随时更改)

  1. 干了一件什么事:
    提出了一个文生视频模型W.A.L.T。提出了w
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值