1. 基本信息
- 题目:Photorealistic Video Generation with Diffusion Models
- 时间:2023.12
- 发表:暂无
- 机构:Stanford; Google Research; Georgia Institute of Technology
- 作者:Agrim Gupta等
- 链接直达:paper/project
- 关键词:AIGC,text-to-video, img-to-video
- 概括:基于Transformer的方法,文生视频。
- 摘要翻译:我们介绍了W.A.L.T,这是一种基于Transformer的方法,通过扩散建模生成逼真的视频。我们的方法有两个关键的设计决策。首先,我们使用causal encoder在一个统一的潜在空间内联合压缩图像和视频,从而实现跨模态的训练和生成。其次,为了提高记忆力和训练效率,我们使用为空间和时空联合生成建模量身定制的window attention architecture。总而言之,这些设计决策使我们能够在已建立的视频(UCF-101 和 Kinetics-600)和图像 (ImageNet) 生成基准测试上实现最先进的性能,而无需使用无分类器的指导。最后,我们还训练了三个模型的级联,用于文本到视频的生成任务,包括一个基本的潜在视频扩散模型和两个视频超分辨率扩散模型,以每秒 8 帧的速度生成 512 × 896 分辨率的视频。
2. 理解(个人初步理解,随时更改)
- 干了一件什么事:
提出了一个文生视频模型W.A.L.T。提出了w

W.A.L.T是一个由Stanford、Google Research和Georgia Tech提出的创新模型,它使用Transformer和扩散建模生成逼真的视频。通过因果编码器将图像和视频联合压缩到统一潜在空间,利用窗口注意力架构增强记忆力和训练效率。在UCF-101、Kinetics-600和ImageNet上实现了最佳性能,并且能够生成3D一致性的360度视频。
最低0.47元/天 解锁文章
1062

被折叠的 条评论
为什么被折叠?



