【学习笔记】文生图模型——一、基础

本文概述了机器学习的基本概念,包括定义、数据类型的应用、训练目的(拟合模型和预测)、损失函数与期望损失、过拟合与欠拟合的处理以及正则化的两种形式(L1和L2)。重点介绍了梯度下降方法在优化过程中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.机器学习

        定义:如果机器通过经验E在任务T上提升了指标P,那么称机器对E进行了学习。

        术语:学习过程=训练过程,n维属性=n个特征=输入变量=x,标签=目标变量=输出向量=y,算法=模型=映射


         一组样本=数据集,样本是独立同分布的,一个数据集应划分为训练集和测试集。

        1个实例=1个样本(sample)=1组特征值+对应标签。

例如鸢尾花分类任务,有4个特征(萼片长度,萼片宽度,花瓣长度,花瓣宽度),标签类型有3种('setosa', 'versicolor', 'virginica'),那么其中一个样本可以为(4.1,3.2,1.4,0.2;'virginica')


        1. 连续型数据一般用于回归任务,离散型数据一般用于分类任务

        2.训练的目的是用训练集来拟合一个最佳算法f,使得y=f(x,θ),其中θ为算法可以学习的参数,概率模型通常拟合的是p(y|x)=f(x,θ),用于预测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值