计算多项式的值

本文介绍了一个简单的C语言程序,用于计算形如f(x)=ax^3+bx^2+cx+d的多项式的值,其中x,a,b,c,d为输入参数。程序通过直接相乘的方式避免了使用指数运算符,确保了计算精度。

对于多项式 f(x) = ax^3 + bx^2 + cx + d 和给定的 x, a, b, c, d,计算 f(x) 的值。

输入格式
输入仅一行,包含 5个实数,分别是 x,及参数 a,b,c,d 的值,每个数都是绝对值不超过 100 的浮点数。数与数之间以一个空格分开。

输出格式
输出一个实数,即 f(x) 的值,保留到小数点后 7 位。

首先来分析一下,这是一个复合运算,对于三次方或者二次方,因为有浮点和输入的是实数要求,
所以要用 double 来定义,也就是说,不能用^3 或者^2 ,来表示次方,那就直接简单粗暴一点
直接乘以多次就好啦!

  1. #include <stdio.h>
    int main()
    {
    double x,a,b,c,d;
    scanf("%lf %lf %lf %lf %lf",&x,&a,&b,&c,&d);
    a=axxx;
    b=b
    xx;
    c=c
    x;
    printf("%.7lf",a+b+c+d);
    return 0;
    }

一起来验证一下吧!

在C语言中,有多种方法可以实现多项式计算,以下为你介绍几种常见的方式: ### 普通求和法 普通求和法就是直接按照多项式的定义,将每一项的计算出来并累加。例如,计算多项式 $P(x)=\sum_{i = 0}^{n} a_{i}x^{i}=a_{0}+a_{1}x + a_{2}x^{2}+\cdots+a_{n}x^{n}$ 的。以下是一个示例代码: ```c #include <stdio.h> #include <math.h> // 计算多项式 double polynomial_value(double coefficients[], int degree, double x) { double result = 0; for (int i = 0; i <= degree; i++) { result += coefficients[i] * pow(x, i); } return result; } int main() { // 多项式的系数,这里表示 3 + 2x + 5x^2 double coefficients[] = {3, 2, 5}; int degree = 2; double x = 2; double value = polynomial_value(coefficients, degree, x); printf("多项式在 x = %.2f 处的为: %.2f\n", x, value); return 0; } ``` 在上述代码中,`polynomial_value` 函数接收多项式的系数数组、多项式的次数和自变量 `x` 的作为参数,通过循环计算每一项的并累加,最终返回多项式。 ### 秦九韶算法 秦九韶算法是一种用于计算多项式的高效算法,它可以减少乘法运算的次数。对于多项式 $P(x)=\sum_{i = 0}^{n} a_{i}x^{i}=a_{0}+a_{1}x + a_{2}x^{2}+\cdots+a_{n}x^{n}$,可以将其改写为 $P(x)=((\cdots((a_{n}x + a_{n - 1})x + a_{n - 2})x+\cdots+a_{1})x + a_{0}$ 的形式。以下是使用秦九韶算法计算多项式的示例代码: ```c #include <stdio.h> // 使用秦九韶算法计算多项式 double horner_method(double coefficients[], int degree, double x) { double result = coefficients[degree]; for (int i = degree - 1; i >= 0; i--) { result = result * x + coefficients[i]; } return result; } int main() { // 多项式的系数,这里表示 3 + 2x + 5x^2 double coefficients[] = {3, 2, 5}; int degree = 2; double x = 2; double value = horner_method(coefficients, degree, x); printf("多项式在 x = %.2f 处的为: %.2f\n", x, value); return 0; } ``` 在上述代码中,`horner_method` 函数接收多项式的系数数组、多项式的次数和自变量 `x` 的作为参数,通过循环实现秦九韶算法,最终返回多项式。 ### 特定多项式计算 对于一些特定的多项式,如引用 [1] 中的多项式 $P = 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$,可以使用特定的算法进行计算: ```c #include <stdio.h> int main() { int sign = 1; double deno = 2.0, sum = 1.0, term; while (deno <= 100) { sign = -sign; term = sign / deno; sum = sum + term; deno = deno + 1; } printf("%f\n", sum); return 0; } ``` 在上述代码中,通过循环计算多项式的每一项的,并根据符号进行累加,最终输出多项式的和。 ### 递归计算特定多项式 对于一些具有递推关系的多项式,如引用 [2] 中的 Hermite 多项式 $H_{n}(x) = 2xH_{n - 1}(x)-2(n - 1)H_{n - 2}(x)$,可以使用递归的方法进行计算: ```c #include <stdio.h> // 递归计算 Hermite 多项式 double h(double x, int n) { if (n == 0) { return 1; } else if (n == 1) { return 2 * x; } else if (n > 1) { return 2 * x * h(x, n - 1) - 2 * (n - 1) * h(x, n - 2); } return 0; } int main() { double x = 2; int n = 3; double value = h(x, n); printf("Hermite 多项式 H_%d(%.2f) 的为: %.2f\n", n, x, value); return 0; } ``` 在上述代码中,`h` 函数接收自变量 `x` 和多项式的次数 `n` 作为参数,根据 Hermite 多项式的递推关系进行递归计算,最终返回多项式
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值