K邻近算法k值选取以及kd树概念、原理、构建方法、最近邻域搜索和案例分析

一、k值选择

  • K值过小:容易受到异常点的影响
  • k值过大:受到样本均衡的问题

近似误差:对现有训练集的训练误差,关注训练集,如果近似误差过小可能会出现过拟合的现象,对现有的训练集能有很好的预测,但是对未知的测试样本将会出现较大偏差的预测。模型本身不是最接近最佳模型

估计误差:可以理解为对测试集的测试误差,关注测试集,估计误差小说明对未知数据的预测能力好,模型本身最接近最佳模型

  1. 选择较小的K值,就相当于用较小的领域中的训练实例进行预测,“学习”近似误差会减小,只有与输入实例较近或相似的训练实例才会对预测结果起作用,与此同时带来的问题是“学习”的估计误差会增大,换句话说,K值的减小就意味着整体模型变得复杂,容易发生过拟合
  2. 选择较大的K值,就相当于用较大领域中的训练实例进行预测,其优点是可以减少学习的估计误差,但缺点是学习的近似误差会增大。这时候,与输入实例较远(不相似的)训练实例也会对预测器作用,使预测发生错误,且K值的增大就意味着整体的模型变得简单
  3. K=N(N为训练样本个数),则完全不足取,因为此时无论输入实例是什么,都只是简单的预测它属于在训练实例中最多的类,模型过于简单,忽略了训练实例中大量有用信息

在实际应用中,K值一般取一个比较小的数值,例如采用交叉验证法(简单来说,就是把训练数据在分成两组:训练集和验证集)来选择最优的K值。对这个简单的分类器进行泛化,用核方法把这个线性模型扩展到非线性的情况,具体方法是把低维数据集映射到高维特征空间

二、kd树

2.1 kd树概述

实现k近邻法时,主要考虑的问题是如何对训练数据进行快速k近邻搜索。这在特征空间的维数大及训练数据容量大时尤其必要

k近邻法最简单的实现是线性扫描(穷举搜索),即要计算输入实例与每一个训练实例的距离。计算并存储好以后,再查找K近邻,当训练集很大时,计算非常耗时

为了提高kNN搜索的效率,可以考虑使用特殊的结构存储训练数据,以减小计算距离的次数

根据KNN每次需要预测一个点时,我们都需要计算训练数据集里每个点到这个点的距离,然后选出距离最近的k个点进行投票。当数据集很大时,这个计算成本非常高,针对N个样本,D个特征的数据集,其算法复杂度为O(DN^2)

kd树(K-dimension tree):一种对k维空间中的实例点进行存储以便对其进行快速检索的树形数据结构,为了避免每次都重新计算一遍距离,算法会把距离信息保存在一棵树里,这样在计算之前从树里查询距离信息,尽量避免重新计算

基本原理:如果A和B距离很远,B和C距离很近,那么A和C的距离也很远。有了这个信息,就可以在合适的时候跳过距离远的点,这样优化后的算法复杂度可降低到O(DNlog(N))

2.2 kd树原理

黄色的点作为根节点,上面的点归左子树,下面的点归右子树,接下来再不断地划分,分割的那条线叫做分割超平面(splitting hyperplane),在一维中是一个点,二维中是线,三维的是面

黄色节点就是Root节点,下一层是红色,再下一层是绿色,再下一层是蓝色(垂直切)

1.树的建立;

2.最近邻域搜索(Nearest-Neighbor Lookup):kd树是一种二叉树,表示对k维空间的一个划分,构造kd树相当于不断地用垂直于坐标轴的超平面将K维空间切分,构成一系列的K维超矩形区域。kd树的每个结点对应于一个k维超矩形区域。利用kd树可以省去对大部分数据点的搜索,从而减少搜索的计算量

类比“二分查找”:给出一组数据:[9 1 4 7 2 5 0 3 8],要查找8。若挨个查找(线性扫描),需将所有数据集都遍历一遍。若先排序为:[0 1 2 3 4 5 6 7 8 9],按前一种方式进行了很多没有必要的查找,现若以5为分界点,则数据集被划分为了左右两个“簇” [0 1 2 3 4]和[6 7 8 9]

因此,没必要进入第一个簇,可直接进入第二个簇进行查找。把二分查找中的数据点换成k维数据点,这样的划分就变成了用超平面对k维空间的划分。空间划分就是对数据点进行分类,“挨得近”的数据点就在一个空间里面

2.3 kd树构造方法

  1. 构造根结点,使根结点对应于K维空间中包含所有实例点的超矩形区域
  2. 通过递归不断地对k维空间进行切分,生成子结点。在超矩形区域上选择一个坐标轴和在此坐标轴上的一个切分点,确定一个超平面,这个超平面通过选定的切分点并垂直于选定的坐标轴,将当前超矩形区域切分为左右两个子区域(子结点),这时,实例被分到两个子区域
  3. 上述过程直到子区域内没有实例时终止(终止时的结点为叶结点)。在此过程中,将实例保存在相应的结点上
  4. 通常,循环的选择坐标轴对空间切分,选择训练实例点在坐标轴上的中位数为切分点,这样得到的kd树是平衡的(平衡二叉树:它是一棵空树,或其左子树和右子树的深度之差的绝对值不超过1,且它的左子树和右子树都是平衡二叉树)

kd树中每个节点是一个向量,和二叉树按照数的大小划分不同的是,KD树每层需要选定向量中的某一维,然后根据这一维按左小右大的方式划分数据。在构建KD树时,关键需要解决2个问题:

  1. 选择向量的哪一维进行划分
  2. 如何划分数据

第一个问题简单的解决方法可以是随机选择某一维或按顺序选择,但是更好的方法应该是在数据比较分散的那一维进行划分(分散的程度可以根据方差来衡量)。好的划分方法可以使构建的树比较平衡,可以每次选择中位数来进行划分,这样问题2也得到了解决

三、案例分析

3.1 树的建立

给定一个二维空间数据集:T={(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},构造一个平衡kd树

根结点对应包含数据集T的矩形,选择x轴,6个数据点的x坐标中位数是6,这里选最接近的(7,2)点,以平面x=7将空间分为左、右两个子矩形(子结点),接着左矩形以y=4分为两个子矩形(左矩形中{(2,3),(5,4),(4,7)}点的y坐标中位数正好为4),右矩形以y=6分为两个子矩形,如此递归,最后得到如下图所示的特征空间划分和kd树,具体步骤如下

  • 先进行排序
    • x轴:2,4,5,7,8,9,9-2=7,方差更大
    • y轴:1,2,3,4,6,7 ,7-1=6,方差更小
  • 第一次:选择方差更大的切分,故首先选择x轴切分,x轴中选中间那个数切分,即5和7选任意一个数,这里选择(7,2)作为根节点,则左边对应点为(2,3),(4,7),(5,4),右边对应点为(8,1),(9,6)
  • 第二次:划分左右边对应数后,由于是垂直切分,从y轴开始选择,故再对y轴数进行排序
    • 左边数(2,3),(4,7),(5,4)中y轴数排序为:3,4,7
    • 右边数(8,1),(9,6)中y轴数排序为:1,6
    • 故第二次对(5,4)和(9,6)进行切分
  • 第三次:再对垂直于y轴的x轴进行切分:剩余点由于(5,4)左边只有一个点(2,3),右边只有一个点(4,7),(9,6)左边只有一个点(8,1),右边无,故直接进行切分

3.2 最近邻域的搜索 

假设标记为星星的点是测试点, 绿色的点是找到的近似点,在回溯过程中,需要用到一个队列,存储需要回溯的点,在判断其他子节点空间中是否有可能有距离查询点更近的数据点时,做法是以查询点为圆心,以当前的最近距离为半径画圆,这个圆称为候选超球(candidate hypersphere),如果圆与回溯点的轴相交,则需要将轴另一边的节点都放到回溯队列里面来

查找点(2.1,3.1) 

  • 在(7,2)点测试到达(5,4),在(5,4)点测试到达(2,3),然后search_path中的结点为<(7,2),(5,4),(2,3)>,从search_path中取出(2,3)作为当前最佳结点nearest, dist为\sqrt{\left ( 2-2.1 \right )^{2}+\left ( 3-3.1 \right )^{2}} = 0.141
  • 然后回溯至(5,4),以(2.1,3.1)为圆心,以dist=0.141为半径画一个圆,并不和超平面y=4相交,如上图,所以不必跳到结点(5,4)的右子空间去搜索,因为右子空间中不可能有更近样本点了
  • 于是再回溯至(7,2),同理,以(2.1,3.1)为圆心,以dist=0.141为半径画一个圆并不和超平面x=7相交,所以也不用跳到结点(7,2)的右子空间去搜索
  • 至此,search_path为空,结束整个搜索,返回nearest(2,3)作为(2.1,3.1)的最近邻点,最近距离为0.141

查找点(2,4.5)

  • 在(7,2)处测试到达(5,4),在(5,4)处测试到达(4,7)【优先选择在本域搜索】,然后search_path中的结点为<(7,2),(5,4), (4,7)>,从search_path中取出(4,7)作为当前最佳结点nearest, dist为3.202
  • 然后回溯至(5,4),以(2,4.5)为圆心,以dist=3.202为半径画一个圆与超平面y=4相交,所以需要跳到(5,4)的左子空间去搜索。所以要将(2,3)加入到search_path中,现在search_path中的结点为<(7,2),(2, 3)>;另外,(5,4)与(2,4.5)的距离为3.04 < dist = 3.202,所以将(5,4)赋给nearest,并且dist=3.04
  • 回溯至(2,3),(2,3)是叶子节点,直接平判断(2,3)是否离(2,4.5)更近,计算得到距离为1.5,所以nearest更新为(2,3),dist更新为(1.5)
  • 回溯至(7,2),同理,以(2,4.5)为圆心,以dist=1.5为半径画一个圆并不和超平面x=7相交, 所以不用跳到结点(7,2)的右子空间去搜索

首先通过二叉树搜索(比较待查询节点和分裂节点的分裂维的值,小于等于就进入左子树分支,大于就进入右子树分支直到叶子结点),顺着“搜索路径”很快能找到最近邻的近似点,也就是与待查询点处于同一个子空间的叶子结点

然后再回溯搜索路径,并判断搜索路径上的结点的其他子结点空间中是否可能有距离查询点更近的数据点,如果有可能,则需要跳到其他子结点空间中去搜索(将其他子结点加入到搜索路径)

重复这个过程直到搜索路径为空

学习导航:http://xqnav.top/

  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
Optimal Neighborhood Kernel Clustering (ONKC)算法中的邻域分析和k聚类算法有一些区别。邻域分析是指计算每个数据点的邻域,在ONKC算法中,邻域由每个数据点的K个最近邻居组成。而k聚类是指将数据点分成k个簇,使得每个簇内部相似度高,不同簇之间相似度低。在ONKC算法中,将邻域进行k聚类分析是为了获得更好的聚类效果。 具体来说,ONKC算法首先通过高斯核函数计算每对数据点之间的相似度,然后根据每个数据点的邻域构建邻域核矩阵。邻域核矩阵可以看做是一个加权的邻接矩阵,其中每个数据点的邻域被赋予不同的权重。这个权重是由高斯核函数计算得到的,反映了数据点之间的相似度。由于邻域核矩阵中的权重并不是二元的,而是在0到1之间连续变化的,因此ONKC算法引入了k聚类分析来将邻域核矩阵中的权重分成k个不同的组。这样,每个数据点就被分配到了k个不同的组中,并且每个组中的数据点都具有相似的权重。这种分组可以看作是一种聚类,它可以帮助ONKC算法更好地分离不同的数据簇。 因此,将邻域进行k聚类分析是为了将数据点分为k个不同的组,使得组内的数据点具有相似的权重,从而获得更好的聚类效果。与传统的k聚类算法不同,ONKC算法中的邻域核矩阵中的权重是由高斯核函数计算得到的,是一种连续变化的权重。因此,将邻域进行k聚类分析可以更好地反映数据点之间的相似度,从而获得更好的聚类效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

learning-striving

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值