给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, …)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
示例 1:
输入:n = 12
输出:3
解释:12 = 4 + 4 + 4
示例 2:
输入:n = 13
输出:2
解释:13 = 4 + 9
动态规划
class Solution {
public:
int numSquares(int n) {
vector<int> dp(n+1,10001);
dp[0] = 0;
dp[1] = 1;
for(int i = 1;i<=n;i++){
for(int j = 1;i-j*j>=0;j++)
dp[i] = min(dp[i],dp[i-j*j]+1);
}
return dp[n];
}
};
广搜
class Solution {
public:
int numSquares(int n) {
vector<int> visited(n+1,0);
queue<pair<int,int>> q;
q.push(make_pair(n,0));
while(!q.empty()){
int num = q.front().first;
int step = q.front().second;
q.pop();
for(int i = 1;i*i<=num;i++){
int next = num-i*i;
//if(next<0) break;
if(next==0) return step+1;
if(!visited[next]){
visited[next] = 1;
q.push(make_pair(next,step+1));
}
}
}
return -1;
}
};
};
深搜+记忆化
class Solution {
public:
int memo[10001];
int dfs(int num,int n){
if(n<0) return -1;
if(n==0){
return 0;
}
if(memo[n]) return memo[n];
int mins = INT_MAX;
for(int i = num;i>=1;i--){
int res = dfs(num,n-i*i)+1;
//最小次数
if(res>0&&res<mins)
mins = res;
}
memo[n] = mins;
return memo[n];
}
int numSquares(int n) {
if(n==1) return 1;
int i = 1;
while(i*i<=n) i++;
i--;
dfs(i,n);
return memo[n];
}