dfs,算是我接触到的第一种算法。有着一种充满逻辑的美。
它可以用在地图问题,比如八皇后问题,还有一些涉及数组排序的问题,也可以用在一些涉及最优的问题。
我觉得它的最精华的地方是他的return语句,类似于画一个都是选择的道路,每一个路口都可以选择,然后走到底。用老师的话来说就是不撞南墙不回头,如果撞了南墙就回头。
举个例子:
- 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过。给定起点坐标和终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案。在迷宫中移动有上下左右四种方式,每次只能移动一个方格。数据保证起点上没有障碍。输入输出格式
输入格式:
【输入】
第一行N、M和T,N为行,M为列,T为障碍总数。第二行起点坐标SX,SY,终点
坐标FX,FY。接下来T行,每行为障碍点的坐标。
输出格式:
【输出】
给定起点坐标和终点坐标,问每个方格最多经过1次,从起点坐标到终点坐标的方
案总数。
这里的解体逻辑就是往在一个位置往四面八方走,然后对就输出不对就return。很符合人类对逻辑。
这里贴一下我的代码:
#include<stdio.h>
int a[6][6],book[6][6],n,m,t,sum;//book数组是用来判断地图数组是否可以走
int q,d,z,dian;
int zhang,ai;
void dfs(int x,int y)
{
if(x>n||y>m||x<1||y<1)
return;
if(x==z&&y==dian&&book[x][y]==0)//如果是终点就停止
{
sum+=1;
return;
}
if(book[x][y]!=0)
return ;
if(book[x][y]==0)
{
book[x][y]=1;
dfs(x,y+1);//向四面八方走
dfs(x+1,y);
dfs(x-1,y);
dfs(x,y-1);
book[x][y]=0;
}
return;
}
int main()
{
while(scanf("%d %d %d",&n,&m,&t)!=EOF)
{
sum=0;
scanf("%d %d %d %d",&q,&d,&z,&dian);
while(t--)
{
scanf("%d %d",&zhang,&ai);
book[zhang][ai]=-1;
}
dfs(q,d);
printf("%d\n",sum);
}
return 0;
}