第二天:深度优先搜索

dfs,算是我接触到的第一种算法。有着一种充满逻辑的美。

它可以用在地图问题,比如八皇后问题,还有一些涉及数组排序的问题,也可以用在一些涉及最优的问题。

我觉得它的最精华的地方是他的return语句,类似于画一个都是选择的道路,每一个路口都可以选择,然后走到底。用老师的话来说就是不撞南墙不回头,如果撞了南墙就回头。

举个例子:

  • 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过。给定起点坐标和终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案。在迷宫中移动有上下左右四种方式,每次只能移动一个方格。数据保证起点上没有障碍。输入输出格式
    输入格式:
    【输入】
    第一行N、M和T,N为行,M为列,T为障碍总数。第二行起点坐标SX,SY,终点
    坐标FX,FY。接下来T行,每行为障碍点的坐标。
    输出格式:
    【输出】
    给定起点坐标和终点坐标,问每个方格最多经过1次,从起点坐标到终点坐标的方
    案总数。

这里的解体逻辑就是往在一个位置往四面八方走,然后对就输出不对就return。很符合人类对逻辑。

这里贴一下我的代码:

#include<stdio.h>

int a[6][6],book[6][6],n,m,t,sum;//book数组是用来判断地图数组是否可以走
int q,d,z,dian;
int zhang,ai;

void dfs(int x,int y)
{
	if(x>n||y>m||x<1||y<1)
	return;
	if(x==z&&y==dian&&book[x][y]==0)//如果是终点就停止
	{	
	sum+=1;
		return;
	}
	if(book[x][y]!=0)
	return ;

	
		if(book[x][y]==0)
		{
			
			book[x][y]=1;
			dfs(x,y+1);//向四面八方走
			dfs(x+1,y);
			dfs(x-1,y);
			dfs(x,y-1);
			book[x][y]=0;
		}		
	
	return;	
} 
int main()
{
	while(scanf("%d %d %d",&n,&m,&t)!=EOF)
		{	
				sum=0;
				scanf("%d %d %d %d",&q,&d,&z,&dian);
				while(t--)
					{
						scanf("%d %d",&zhang,&ai);
						book[zhang][ai]=-1;
					}
					dfs(q,d);
					printf("%d\n",sum);
		}
	return 0;	
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值