主成分分析PCA,(主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征)

%% I. 清空环境变量   
%% PCA-BP  
%% I. 清空环境变量
clear all 
clc
%%  导入数据
X = xlsread('inputd');
%% PCA主成分降维
[Z,MU,SIGMA]=zscore(X);

%% 计算相关系数矩阵
Sx=cov(Z);  % 相关系数矩阵计算

%% 计算相关系数矩阵的特征值特征向量
[V,D] = eig(Sx);   %计算相关系数矩阵的特征向量及特征值

eigValue = diag(D);  %将特征值提取为列向量

[eigValue,IX]=sort(eigValue,'descend');%特征值降序排序
eigVector=V(:,IX);                     %根据排序结果,特征向量排序

C=sort(eigValue,'descend');                        %特征值进行降序排序

rat1=C./sum(C)                       %求出排序后的特征值贡献率
rat2=cumsum(C)./sum(C)               %求出排序后的累计贡献率


result1(1,:)   = {'特征值','贡献率','累计贡献率'};      %细胞矩阵1第一行标题
result1(2:(length(D)+1),1) = num2cell(C);                      %将特征值放到第一列
result1(2:(length(D)+1),2) = num2cell(rat1);                   %将贡献率放到第二列
result1(2:(length(D)+1),3) = num2cell(rat2)                    %将累计贡放到第三列

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法及其模型预测

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值