遗传算法(GA)优化支持向量机的数据回归预测,GA-SVM回归预测,多输入单输出模型。

这段代码展示了如何使用MATLAB处理数据,包括读取Excel数据,进行训练集和测试集划分,数据归一化以及应用遗传算法进行优化。数据预处理涉及对特征变量`P_train`和目标变量`T_train`的处理,同时对测试集`P_test`和`T_test`进行了同样的操作。优化算法部分,定义了目标函数,设置了参数维度、上下界、种群数量和最大迭代次数,并运行了遗传算法来寻找最优解。
摘要由CSDN通过智能技术生成

 

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
tic
%%  导入数据
P_train = xlsread('data','training set','B2:G191')';
T_train= xlsread('data','training set','H2:H191')';
% 测试集——44个样本
P_test=xlsread('data','test set','B2:G45')';
T_test=xlsread('data','test set','H2:H45')';

%%  划分训练集和测试集
M = size(P_train, 2);
N = size(P_test, 2);
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

%%  参数设置
fun = @getObjValue;    % 目标函数
dim = 2;               % 优化参数个数
lb  = [0.01, 0.01];    % 优化参数目标下限
ub  = [ 1000,  1000];    % 优化参数目标上限
pop = 6;              % 种群数量
Max_iteration = 10;   % 最大迭代次数   

%%  优化算法
[Best_pos,Best_score, curve] = GA(pop, Max_iteration, lb, ub, dim, fun); 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法及其模型预测

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值