Sentinel-2波段合成

Sentinel-2波段合成

在上一篇博客中下载了Sentinel-2数据,他有13个波段的.jp2文件,下面选取需要使用的波段进行合成。在这里插入图片描述
导入了B2(蓝色)、B3(绿色)、B4(红色)、B8(近红外)
注意:要先将.jp2波段依次另存为ENVI格式文件,直接存为TIFF会丢失坐标信息
在这里插入图片描述
得到下面这些.dat格式
在这里插入图片描述工具栏中打开Raster Management-Layer Stacking波段合成工具
在这里插入图片描述
导入四个波段在这里插入图片描述
合成结果如下
在这里插入图片描述
最后将合成好的影像存为TIFF
在这里插入图片描述

### 关于 Sentinel-2 卫星的 SAR 数据 需要注意的是,Sentinel-2 并不携带合成孔径雷达(SAR)设备。实际上,Sentinel-2 主要配备有多光谱成像仪(MSI),用于提供高分辨率的地表反射率图像数据[^1]。 对于 SAR 类型的数据需求,通常会转向专门设计来搭载此类传感器的卫星平台,比如 Sentinel-1,其提供了C波段SAR观测能力并支持多种应用领域内的研究工作。 然而,在某些情况下如果希望结合光学影像与雷达数据来进行更全面的研究,则可以考虑将来自不同哨兵系列的任务所收集到的信息融合起来使用。例如,利用 Sentinel-2 的多光谱图像配合 Sentinel-1 提供的全天候 SAR 图像,从而增强特定环境监测任务的效果。 当涉及到具体处理流程时: ```python from sentinelsat import SentinelAPI, read_geojson, geojson_to_wkt import snappy # 初始化 API 客户端连接 Copernicus Open Access Hub api = SentinelAPI('username', 'password') # 查询产品(这里假设查询的是 Sentinel-1) products = api.query(...) # 下载选定的产品文件至本地目录 api.download_all(products) # 使用 SNAP Python 绑定库读取下载后的 SAFE 文件夹中的 GRD 产品 product = snappy.ProductIO.readProduct('/path/to/downloaded/product') ``` 上述代码片段展示了如何通过 `sentinelsat` 库访问 ESA 开放存取中心以检索所需遥感资料,并借助 `snappy` 进行初步加载操作。请注意这仅适用于 Sentinel-1 的 GRD 数据集;而对于 Sentinel-2 MSI 获取的 L1C 或者 L2A 级别的产品则需采用其他相应工具链进行预处理分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海绵波波107

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值