PROSAIL反演LAI(三)精度改进方法

PROSAIL反演LAI精度改进方法

反演LAI精度不佳的几大原因:

一、外业测量,叶倾角与叶面积指数

在采集过程中,是遵循每块地测量多个点最后取平均值来计算单块地的LAI的。然而在测量中也存在误差,比如叶倾角在20-70的范围内比较合理,原数据中出现了很多9.546974,可能是异常值,应该删去之后再做统计
在这里插入图片描述
查了一些文献,了解了生成查找表前输入参数的设置方法
所以说查找表的质量也很重要,最好这些输入参数能针对自己的研究区进行一些采样,了解大概的一个最值范围,以及分布情况,是否统计上是正态分布还是均匀分布
在这里插入图片描述
在这里插入图片描述

### 使用PROSAIL模型进行LAI反演方法及应用 #### PROSAIL模型简介 PROSAIL是一个组合了叶片光学属性模型(PROSPECT)和冠层结构效应模型(SAIL)的综合模型,用于模拟植被冠层反射率。该模型能够描述不同波长范围内植物冠层的光谱响应特征,从而支持从遥感影像中提取植被参数。 #### 数据准备 为了执行LAI反演,需要收集高质量的地表反射率数据作为输入[^1]。这些数据通常来源于卫星传感器(如MODIS、Sentinel-2),也可以来自航空摄影测量或地面实测设备获取的数据集。确保所使用的图像已经过大气校正处理,并且去除了云污染的影响。 #### 构建查找表(LUT) 构建查找表是实现快速而有效的LAI估计的关键步骤之一。具体操作如下: 1. **配置模型参数** - 在`models`菜单下启动`prospect 5`模型并调整含氮量范围为\[1,4\],步长设为1。 - 接着,在`canopy`模块内激活`4SAIL`模型,设定所需的LAI值域及其他必要条件。 2. **运行前向仿真** - 完成上述设置后,点击`forward`按钮下的对应选项以触发仿真实验。 - 对于大规模计算任务可以选择适当数量(例如500条记录)保存至文件系统供后续分析使用[^3]。 #### 敏感性分析与代价函数定义 完成LUT创建之后,需进一步探讨各因素对于最终结果影响程度——即开展敏感度测试;同时确立衡量预测精度的标准—也就是建立合适的成本/损失函数形式。此过程有助于识别哪些变量最能显著改变输出以及怎样量化误差水平以便指导下一步骤的选择。 #### 应用反演算法 有了充分预处理后的资料库支撑,现在可以着手实施具体的逆向推理流程了。常用的技术手段包括但不限于最小二乘法、神经网络和支持向量机等机器学习策略。其中一种简单的方式就是采用最近邻搜索算法寻找距离目标样本最近的一组已知实例,进而推断未知位置处可能存在的LAI数值。 ```python from sklearn.neighbors import KNeighborsRegressor import numpy as np # 假定X_train存储训练集中每条记录对应的反射率特征向量, # y_train则表示相应的真实LAI标签; # X_test代表待预测的新观测点集合。 knn = KNeighborsRegressor(n_neighbors=1).fit(X_train, y_train) predicted_LAI_values = knn.predict(X_test) print(predicted_LAI_values) ``` #### 结果验证与解释 最后一步是对所得结论的有效性和可靠性做出评价。这往往涉及到交叉检验机制的应用,即将原始数据随机划分为若干子集轮流充当测试对象,以此获得更加稳健可靠的性能指标统计分布情况。此外还需注意结合实地考察积累的经验知识共同解析研究发现的意义所在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海绵波波107

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值