爱丽丝和鲍勃一起玩游戏,他们轮流行动。爱丽丝先手开局。
最初,黑板上有一个数字 N 。在每个玩家的回合,玩家需要执行以下操作:
选出任一 x,满足 0 < x < N 且 N % x == 0 。
用 N - x 替换黑板上的数字 N 。
如果玩家无法执行这些操作,就会输掉游戏。
只有在爱丽丝在游戏中取得胜利时才返回 True,否则返回 False。假设两个玩家都以最佳状态参与游戏。
示例 1:
输入:2
输出:true
解释:爱丽丝选择 1,鲍勃无法进行操作。
示例 2:
输入:3
输出:false
解释:爱丽丝选择 1,鲍勃也选择 1,然后爱丽丝无法进行操作。
解题
class Solution {
public:
bool divisorGame(int N) {
if(N == 1) return false;
if(N == 2) return true;
//初始化dp table为false
vector<bool> dp(N+1, false);
dp[2] = true;
//遍历dp table
for(int i = 3; i <= N; i++){
for(int j = 1; j < i; j++){
//转移方程
if(i % j == 0 && dp[i - j] == false){
dp[i] = true;
break;
}
}
}
return dp[N];
}
};