优化理论14----二分法、二分法与黄金分割法比较、python实现

本文详细介绍了二分法的原理和求解过程,对比了二分法与黄金分割法在求极值和根上的效率,并提供了二分法的Python实现。内容涵盖一维搜索的适用条件、两种方法的迭代判断以及它们在一维凸函数优化中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python中,我们可以使用二分法(也称为黄金分割搜索)来求解方程 `tan(x) - x = 0` 的根,特别是当这个函数在一个区间内连续且单调的时候,这是一个有效的数值逼近方法。这是因为二分法假设函数在给定区间内有一个零点,并通过不断将区间缩小一半来逼近它。 以下是使用二分法的基本步骤: 1. 定义一个初始搜索区间,比如 `[a, b]`,其中 `a` 和 `b` 都是实数,`b > a` 并且有 `f(a) * f(b) < 0` (因为根据零点存在定理,我们知道在一个连续函数的零点两侧,函数值异号)。 2. 计算区间的中点 `c = (a + b) / 2`。 3. 检查函数 `f(c)` 的值。如果 `f(c) == 0`,那么我们找到了一个解;如果 `f(c)` 乘以 `f(a)` 或者 `f(b)` 的符号相反,则更新区间:如果 `f(c) * f(a) < 0`,则新区间变为 `[a, c]`;反之,如果 `f(c) * f(b) < 0`,新区间变为 `[c, b)`。 4. 重复步骤2和3,直到满足所需的精度或者区间足够小(例如,小于某个很小的阈值或迭代次数达到最大限制)为止。 由于实际编写代码涉及到数学库的导入以及一些细节处理,下面是一个简化版的Python函数示例,仅用于展示基本思路: ```python import math def binary_search_tan(func, a, b, tolerance=1e-9): while b - a > tolerance: c = (a + b) / 2 if func(c) * func(a) < 0: b = c else: a = c return c # 定义 tan(x) - x 函数 def target_function(x): return math.tan(x) - x # 使用二分法求解 solution = binary_search_tan(target_function, -math.pi / 2, math.pi / 2) print(f"近似解: {solution}")
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

炫云云

你的鼓励是我创作最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值