优化理论17----wolfe_Powell准则、Wo1fe-Powell搜索法

本文介绍了Armijo-Goldstein准则的不足,并详细阐述了Wolfe-Powell准则,包括其两个条件和在优化算法中的应用。Wolfe-Powell搜索法通过迭代寻找合适的步长,以避免极小值被排除在外。该方法常用于不精确的一维搜索中,以提高优化效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💖💖感谢各位观看这篇文章,💖💖点赞💖💖、收藏💖💖、你的支持是我前进的动力!💖💖

💖💖感谢你的阅读💖,专栏文章💖持续更新!💖关注不迷路!!💖

不精确一维搜索——Wolfe-Powell搜索法


最优化知识笔记整理汇总,超级棒

Armijo-Goldstein 准则的不足

Armijo-Goldstein 准则有可能把最优步长排除在可接受区间外面.如下图所示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

炫云云

你的鼓励是我创作最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值