19【推荐系统10】从POLY2、FM到FFM——自动特征交叉的解决方案

117 篇文章 16 订阅 ¥129.90 ¥299.90
本文介绍了推荐系统中特征交叉的重要性,以解决线性模型如逻辑回归的局限性。从POLY2模型开始,通过特征的二阶交叉,到FM模型引入隐向量解决数据稀疏性问题,再到FFM模型引入特征域概念增强表达能力,阐述了模型的逐步优化。文章通过实例解释了辛普森悖论,展示了特征交叉的必要性,并探讨了不同模型的优缺点及训练复杂度。
摘要由CSDN通过智能技术生成

1、前言

逻辑斯谛(Logistic)回归 模型不具备特征组合的能力,表达能力不强,会不可避免地造成有效信息的损失。在仅利用单一特征而非交叉特征进行判断的情况下,有时不仅是信息损失的问题,甚至会得出错误的结论。著名的“辛普森悖论”用一个非常简单的例子,说明了进行多维度特征交叉的重要性

基础知识一什么是辛普森悖论

在对样本集合进行分组研究时,在分组比较中都占优势的一方, 在总评中有时反而是失势的一方,这种有悖常理的现象,被称为“辛普森悖论”。下面用一个视频推荐的例子进一步 说明什么是“辛普森悖论”。

假设表1和表2所示为某视频应用中男性用户和女性用户点击视频的数据。

在这里插入图片描述

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

炫云云

你的鼓励是我创作最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值