Codeforces Round #618C

time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
Anu has created her own function f: f(x,y)=(x|y)−y where | denotes the bitwise OR operation. For example, f(11,6)=(11|6)−6=15−6=9. It can be proved that for any nonnegative numbers x and y value of f(x,y) is also nonnegative.

She would like to research more about this function and has created multiple problems for herself. But she isn’t able to solve all of them and needs your help. Here is one of these problems.

A value of an array [a1,a2,…,an] is defined as f(f(…f(f(a1,a2),a3),…an−1),an) (see notes). You are given an array with not necessarily distinct elements. How should you reorder its elements so that the value of the array is maximal possible?

Input
The first line contains a single integer n (1≤n≤105).

The second line contains n integers a1,a2,…,an (0≤ai≤109). Elements of the array are not guaranteed to be different.

Output
Output n integers, the reordering of the array with maximum value. If there are multiple answers, print any.

Examples
inputCopy
4
4 0 11 6
outputCopy
11 6 4 0
inputCopy
1
13
outputCopy
13
Note
In the first testcase, value of the array [11,6,4,0] is f(f(f(11,6),4),0)=f(f(9,4),0)=f(9,0)=9.

[11,4,0,6] is also a valid answer.
[题意]

元式就等价于f(a,b)=a&(~b),在b中为1的位数,在a中将变成0,第一个数越大越好,后面的任意输出就可以,关键是第一个数,用一个cnt数组来存n个数当中第i位为1的数量,cnt等于1正好,小于或者大于1最终都会变成0,从高位开始遍历,当时没做出来,太菜了,一方面是由于对于禁止方面不是很熟悉,另一方面还是思维不够开阔。

AC代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e5+10;
ll a[maxn],cnt[50];
int main()
{
    ios::sync_with_stdio(false);
    ll n;
    cin>>n;
    for(ll i=1;i<=n;i++)
    {
        cin>>a[i];
        for(ll j=0;j<=31;j++)
        {
            if((a[i]>>j)&1)
                cnt[j]++;
        }
    }
    for(ll i=31;i>=0;i--)
    {
        if(cnt[i]==1)
        {
            ll pos=0;
            for(ll j=1;j<=n;j++)
            {
                if((a[j]>>i)&1)
                {
                    pos=j;
                }
            }
            cout<<a[pos]<<" ";
            for(ll i=1;i<pos;i++)
                cout<<a[i]<<" ";
            for(ll i=pos+1;i<=n;i++)
                cout<<a[i]<<" ";
            return 0;
        }
    }
    for(ll i=1;i<=n;i++)
        cout<<a[i]<<" ";
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值