python爬取数据

1、基础内容

# __name__是一种变量
print(__name__)

# 列表解析式
x = [i for i in range(10) if i % 2 == 0]
print(x)

# 装饰器 --> 加强,一般用加强函数和类
import time
def printtime(func):
    def f(*args, **kwargs):
        print(time.ctime())
        return func(*args, **kwargs)
    return f
@printtime
def printHello():
    print("hello world")
printHello()

# 递归函数
def jcN(n):
    if n == 1:
        return n
    return n * jcN(n - 1)
print(jcN(66))

2、数据的获取

请求网页数据并解析

以爬取豆瓣网的新书速递为例

import requests
from bs4 import BeautifulSoup as bs

# 请求数据
url = "https://book.douban.com/latest"
# headers里面大小写均可
headers = {"User-Agent":	"Mozilla/5.0 (Windows NT 10.0; WOW64; rv:68.0) Gecko/20100101 Firefox/68.0"}
data = requests.get(url, headers=headers)

# 解析数据
soup = bs(data.text, "lxml")
# 观察网页元素
books_left = soup.find('ul', {"class": "cover-col-4 clearfix"})
books_left = books_left.find_all("li")
books_right = soup.find('ul', {"class": "cover-col-4 pl20 clearfix"})
books_right = books_right.find_all("li")
books = list(books_left) + list(books_right)

# 对每个图书区进行相同的操作,获取图书信息
img_urls = []
titles = []
ratings = []
authors = []
details = []
for book in books:
    #图书封面图片url
    img_url = book.find_all('a')[0].find("img").get("src")
    img_urls.append(img_url)
    #图书标题
    title = book.find_all("a")[1].get_text()
    titles.append(title)
    #评价星级
    rating = book.find("p", {"class" : "rating"}).get_text()
    rating = rating.replace("\n", "").replace(" ", "")
    ratings.append(rating)
    #作者
    author = book.find("p", {"class" : "color-gray"}).get_text()
    author = author.replace("\n", "").replace(" ", "")
    authors.append(author)
    #简介
    detail = book.find_all("p")[2].get_text()
    detail = detail.replace("\n", "").replace(" ", "")
    details.append(detail)

# 总结
print("img_urls : ", img_urls)
print("titles : ", titles)
print("ratings : ", ratings)
print("authtors : ", authors)
print("details : ", details)

数据的存储

将数据储存为csv格式

import pandas as pd
# 存储数据
result = pd.DataFrame()
result["img_urls"] = img_urls
result["titles"] = titles
result["ratings"] = ratings
result["authors"] = authors
result["details"] = details
result.to_csv("result.csv", index=None)

提升一下代码的可读性

import requests
from bs4 import BeautifulSoup as bs
import pandas as pd


# 请求数据
def get_data():
    url = "https://book.douban.com/latest"
    # headers里面大小写均可
    headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64; rv:68.0) Gecko/20100101 Firefox/68.0"}
    data = requests.get(url, headers=headers)
    return data


# 解析数据
def parse_data(data):
    soup = bs(data.text, "lxml")
    # 观察网页元素
    books_left = soup.find('ul', {"class": "cover-col-4 clearfix"})
    books_left = books_left.find_all("li")
    books_right = soup.find('ul', {"class": "cover-col-4 pl20 clearfix"})
    books_right = books_right.find_all("li")
    books = list(books_left) + list(books_right)

    # 对每个图书区进行相同的操作,获取图书信息
    img_urls = []
    titles = []
    ratings = []
    authors = []
    details = []
    for book in books:
        # 图书封面图片url
        img_url = book.find_all('a')[0].find("img").get("src")
        img_urls.append(img_url)
        # 图书标题
        title = book.find_all("a")[1].get_text()
        titles.append(title)
        # 评价星级
        rating = book.find("p", {"class": "rating"}).get_text()
        rating = rating.replace("\n", "").replace(" ", "")
        ratings.append(rating)
        # 作者
        author = book.find("p", {"class": "color-gray"}).get_text()
        author = author.replace("\n", "").replace(" ", "")
        authors.append(author)
        # 简介
        detail = book.find_all("p")[2].get_text()
        detail = detail.replace("\n", "").replace(" ", "")
        details.append(detail)

    return img_urls, titles, ratings, authors, details



# 存储数据
def save_data(img_urls, titles, ratings, authors, details):
    result = pd.DataFrame()
    result["img_urls"] = img_urls
    result["titles"] = titles
    result["ratings"] = ratings
    result["authors"] = authors
    result["details"] = details
    result.to_csv("result.csv", index=None)



# 开始爬取
def run():
    data = get_data()
    img_urls, titles, ratings, authtors, details = parse_data(data)
    save_data(img_urls, titles, ratings, authtors, details)

if __name__ == "__main__":
    run()

也可以在get()中设置代理IP
如果get()返回的值有明显乱码则使用chardet改进

import chardet
import requests
import chardet

data = requests.get("http://baidu.com")

charset = chardet.detect(data.content)
print(charset)
# 输出结果为 : {'encoding': 'ascii', 'confidence': 1.0, 'language': ''}
data.encoding = charset["encoding"]
print(data.text)

动态UA

import fake_useragent

ua = fake_useragent.UserAgent()

for i in range(10):
    print(ua.random)
#输出结果
# Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:17.0) Gecko/20100101 Firefox/17.0.6
# Mozilla/5.0 (Windows NT 6.2; WOW64; rv:21.0) Gecko/20130514 Firefox/21.0
# Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1664.3 Safari/537.36
# Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/27.0.1453.93 Safari/537.36
# Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.2 Safari/537.36
# Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/27.0.1453.93 Safari/537.36
# Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/31.0.1623.0 Safari/537.36
# Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.17 (KHTML, like Gecko) Chrome/24.0.1312.60 Safari/537.17
# Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/27.0.1453.93 Safari/537.36
# Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/27.0.1453.90 Safari/537.36

模拟登录

import requests
import pickle
import fake_useragent
from bs4 import BeautifulSoup

url = "https://accounts.douban.com/login"

# 提交表单登录并获取cookie
def get_cookie_from_net(url):
    # 构建表单
    payload = "ck=&name=**id**&password=**password**&remember=false&ticket="
    data = s.post(url, headers= headers, data= payload, verify= True)   #绕过了SSL验证
    with open("cookies.douban", "wb") as f:
        cookiedict = requests.utils.dict_from_cookiejar(s.cookies)
        pickle.dump(cookiedict, f)
    print("提交表单的登录,成功获取cookies...")

    return s.cookies


# 从cookie文件获取cookie
def get_cookie_from_file():
    with open("cookies.douban", "rb") as f:
        cookiedict = pickle.load(f)
        cookies = requests.utils.cookiejar_from_dict(cookiedict)
    print("解析文件,成功提取cookies...")
    return cookies



# 假设这里要获取自己的签名数据
def getdata(html):
    soup = BeautifulSoup(html.text, "lxml")
    mydata = soup.select("#display")[0].get_text()
    """
    这里进行登录后其他数据的获取及存储,这里仅仅获取了自己的签名数据
    """
    return mydata


def login_and_getdata(url):
    print("获取cookies...")
    try:
        s.cookies = get_cookie_from_file()
    except:
        print("从文件获取cookies失败...\n正在尝试提交表单登录以获取...")
        s.cookies = get_cookie_from_net(url)
    html = s.get("https://www.douban.com/people/210137543/", headers= headers)
    data = getdata(html)
    print(data)



if __name__ == "__main__":
    # 一些全局变量
    s = requests.session()  #对象能够跨请求保持某些参数
    ua = fake_useragent.UserAgent()
    headers = {"User-Agent": ua.random}

    #登录并获取数据
    login_and_getdata(url)

验证码问题

import pytesseract
from PIL import Image

img = Image.open("1.png")
# 手动输入
Image._show(img)
captha_img = str(input("输入验证码:"))
# 自动
content = pytesseract.image_to_string(img)
print(content)

动态加载内容的获取

1、直接请求
2、selenium

import time
from selenium import webdriver

def getdata():
    pass

def run():
    json_url = "https://www.csdn.net/"      #要打开的页面
    # 实例化webdriver,选择firefox浏览器
    driver = webdriver.Firefox()
    # 打开网页
    driver.get(json_url)
    # 等待5秒时网页加载完成
    time.sleep(5)

    # 获取当前网页的源码
    html = driver.page_source
    print(html)
    # 这里是对网页数据的解析处理
    data = getdata(html)

    # 释放
    driver.quit()
    return  data

if __name__ == "__main__":
    run()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值