【书生·浦语实战营】基础岛第5关:XTuner 微调个人小助手认知

任务目标

  • 使用 XTuner 微调 InternLM2-Chat-1.8B 实现自己的小助手认知,如下图所示(图中的伍鲜同志需替换成自己的昵称),记录复现过程并截图。
    在这里插入图片描述

学习内容

  1. XTuner微调前置基础
  • Finetune简介
    微调(fine-tuning)是一种基于预训练模型,通过少量的调整(fine-tune)来适应新的任务或数据的方法。
    微调是在预训练模型的基础上,将模型中一些层的权重参数进行微调,以适应新的数据集或任务。
    预训练模型部分已经在大规模数据上得到了训练,它们通常是较为通用且高性能的模型,因此可以很好地作为新任务的起点。微调可以加快模型的收敛速度,降低模型过拟合的风险,并在不消耗过多计算资源的情况下获取较好的模型性能。
    在大模型的下游应用中,经常会用到两种微调模式:增量预训练指令跟随
    增量预训练
    增量预训练是一种在已有预训练模型(比如:InternLM基座模型)的基础上,利用特定领域的数据进行进一步训练的方法。它的目的是在保持模型原有能力的同时,注入新的领域知识,进一步优化现有的预训练模型,从而提升模型在特定领域任务中的表现(比如:InternLM垂类基座模型)。增量预训练模型能够接受少量的新数据进行更新并适应新的任务,而不需要重新训练整个模型,这种方式可以很好地利用现有的预训练模型的知识,并在新数据上获得更好的性能。
    指令跟随
    指令跟随是指让模型根据用户输入的指令来执行相应的操作。模型通过对大量自然语言指令和相应操作的数据进行训练,学习如何将指令分解为具体的子任务,并选择合适的模块来执行这些任务(比如:InternLM垂类对话模型)。
  • 微调技术
    *大多数大型语言模型(LLM)的参数规模巨大,且规模日益增大,导致模型的训练和微调成本高昂,直接训练需要耗费大量计算资源和费用。近年来,如何高效地对大模型进行微调成为了研究热点,而LoRA和QLoRA两种微调技术因其高效性和实用性受到了广泛关注。
    LoRA简介
    LoRA(Low-Rank Adaptation)是一种使用低精度权重对大型预训练语言模型进行微调的技术,它的核心思想是在不改变原有模型权重的情况下,通过添加少量新参数来进行微调。这种方法降低了模型的存储需求,也降低了计算成本,实现了对大模型的快速适应,同时保持了模型性能。
    然而,由于使用了低精度权重,LoRA的一个潜在的缺点是在微调过程中可能会丢失一些原始模型的高阶特征信息,因此可能会降低模型的准确性。
    QLoRA简介
    QLoRA(Quantized LoRA)微调技术是对LoRA的一种改进,它通过引入高精度权重和可学习的低秩适配器来提高模型的准确性。并且在LoRA的基础上,引入了量化技术。通过将预训练模型量化为int4格式,可以进一步减少微调过程中的计算量,同时也可以减少模型的存储空间,这对于在资源有限的设备上运行模型非常有用。最终,可以使我们在消费级的显卡上进行模型的微调训练。
  • XTuner简介
    XTuner 的官方仓库是:https://github.com/InternLM/xtuner
    XTuner 一个大语言模型&多模态模型微调工具箱。由 MMRazor 和 MMDeploy 联合开发。
    傻瓜化: 以 配置文件 的形式封装了大部分微调场景,0基础的非专业人员也能一键开始微调。
    🍃 轻量级: 对于 7B 参数量的LLM,微调所需的最小显存仅为 8GB : 消费级显卡✅,colab✅
    | 功能 | 命令 | 说明 |
    | ---- | ---- |
    | 查看帮助 | xtuner help | |
    | 查看版本 | xtuner version | |
    | 列出所有预定义配置文件 | xtuner list-cfg | |
    | 列出包含指定名称的预定义配置文件 | xtuner list-cfg -p $NAME | |
    | 复制配置文件 | xtuner copy-cfg $CONFIG $SAVE_PATH | |
    | 执行微调训练 | xtuner train $CONFIG | |
    | 将 pth 格式的模型文件转换成 HuggingFace 格式的模型 | xtuner convert $CONFIG $PATH_TO_PTH_MODEL $SAVE_PATH_TO_HF_MODEL| |
  1. 实践
  • 配置基础环境
# 创建虚拟环境
conda create -n xtuner python=3.10 -y

# 激活虚拟环境(注意:后续的所有操作都需要在这个虚拟环境中进行)
conda activate xtuner0121

# 安装一些必要的库
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖
pip install transformers==4.39.3
pip install streamlit==1.36.0
  • 安装XTuner
# 创建一个目录,用来存放源代码
mkdir -p path/to/your/dir

cd path/to/your/dir

git clone -b v0.1.21  https://github.com/InternLM/XTuner /root/InternLM/code/XTuner

进入源码目录进行安装

# 进入到源码目录
cd path/to/your/dir/XTuner
conda activate xtuner

# 执行安装
pip install -e '.[deepspeed]'
# 太慢可以换成
pip install -e '.[deepspeed]' -i https://mirrors.aliyun.com/pypi/simple/

# 最后,我们可以验证一下安装结果
xtuner version

在这里插入图片描述

  • 链接到模型文件
# 创建一个目录,用来存放微调的所有资料,后续的所有操作都在该路径中进行
mkdir -p /root/InternLM/XTuner

cd /root/InternLM/XTuner

mkdir -p Shanghai_AI_Laboratory

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b Shanghai_AI_Laboratory/internlm2-chat-1_8b
  • 微调前的模型对话
conda activate xtuner

streamlit run path/to/Tutorial/tools/xtuner_streamlit_demo.py
  • 指令跟随微调
    数据准备
cd /root/InternLM/code/XTuner
cp /path/to/Tutorial/tools/xtuner_generate_assistant.py ./

# 执行该脚本生成文件
cd /root/InternLM/XTuner
conda activate xtuner
python xtuner_generate_assistant.py
  • 列出支持的配置文件
conda activate xtuner
xtuner list-cfg -p internlm2

在这里插入图片描述

  • 复制一个预设的配置文件
    由于我们是对internlm2-chat-1_8b模型进行指令微调,所以与我们的需求最匹配的配置文件是 internlm2_chat_1_8b_qlora_alpaca_e3,这里就复制该配置文件。
    xtuner copy-cfg 命令用于复制一个内置的配置文件。该命令需要两个参数:CONFIG 代表需要复制的配置文件名称,SAVE_PATH 代表复制的目标路径。在我们的输入的这个命令中,我们的 CONFIG 对应的是上面搜索到的 internlm2_chat_1_8b_qlora_alpaca_e3 ,而 SAVE_PATH 则是当前目录 .
cd /root/InternLM/XTuner
conda activate xtuner

xtuner copy-cfg internlm2_chat_1_8b_qlora_alpaca_e3 .
  • 对配置文件进行修改
    在选择了一个最匹配的配置文件并准备好其他内容后,下面我们要做的事情就是根据我们自己的内容对该配置文件进行调整,使其能够满足我们实际训练的要求。
    整体的配置文件分为五部分:
    PART 1 Settings:涵盖了模型基本设置,如预训练模型的选择、数据集信息和训练过程中的一些基本参数(如批大小、学习率等)。
    PART 2 Model & Tokenizer:指定了用于训练的模型和分词器的具体类型及其配置,包括预训练模型的路径和是否启用特定功能(如可变长度注意力),这是模型训练的核心组成部分。
    PART 3 Dataset & Dataloader:描述了数据处理的细节,包括如何加载数据集、预处理步骤、批处理大小等,确保了模型能够接收到正确格式和质量的数据。
    PART 4 Scheduler & Optimizer:配置了优化过程中的关键参数,如学习率调度策略和优化器的选择,这些是影响模型训练效果和速度的重要因素。
    PART 5 Runtime:定义了训练过程中的额外设置,如日志记录、模型保存策略和自定义钩子等,以支持训练流程的监控、调试和结果的保存。
    一般来说我们需要更改的部分其实只包括前三部分,而且修改的主要原因是我们修改了配置文件中规定的模型、数据集。后两部分都是 XTuner 官方帮我们优化好的东西,一般而言只有在魔改的情况下才需要进行修改。
    下面我们将根据项目的需求一步步的进行修改和调整吧!
    在 PART 1 的部分,由于我们不再需要在 HuggingFace 上自动下载模型,因此我们先要更换模型的路径以及数据集的路径为我们本地的路径。
    为了训练过程中能够实时观察到模型的变化情况,XTuner 贴心的推出了一个 evaluation_inputs 的参数来让我们能够设置多个问题来确保模型在训练过程中的变化是朝着我们想要的方向前进的。我们可以添加自己的输入。
    在 PART 3 的部分,由于我们准备的数据集是 JSON 格式的数据,并且对话内容已经是 inputoutput 的数据对,所以不需要进行格式转换。
#######################################################################
#                          PART 1  Settings                           #
#######################################################################
- pretrained_model_name_or_path = 'internlm/internlm2-chat-1_8b'
+ pretrained_model_name_or_path = '/root/InternLM/XTuner/Shanghai_AI_Laboratory/internlm2-chat-1_8b'

- alpaca_en_path = 'tatsu-lab/alpaca'
+ alpaca_en_path = 'datas/assistant.json'

evaluation_inputs = [
-    '请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
+    '请介绍一下你自己', 'Please introduce yourself'
]

#######################################################################
#                      PART 3  Dataset & Dataloader                   #
#######################################################################
alpaca_en = dict(
    type=process_hf_dataset,
-   dataset=dict(type=load_dataset, path=alpaca_en_path),
+   dataset=dict(type=load_dataset, path='json', data_files=dict(train=alpaca_en_path)),
    tokenizer=tokenizer,
    max_length=max_length,
-   dataset_map_fn=alpaca_map_fn,
+   dataset_map_fn=None,
    template_map_fn=dict(
        type=template_map_fn_factory, template=prompt_template),
    remove_unused_columns=True,
    shuffle_before_pack=True,
    pack_to_max_length=pack_to_max_length,
    use_varlen_attn=use_varlen_attn)

除此之外,我们还可以对一些重要的参数进行调整,包括学习率(lr)、训练的轮数(max_epochs)等等。
在这里插入图片描述

  • 启动微调
    当我们准备好了所有内容,我们只需要将使用 xtuner train 命令令即可开始训练。
    xtuner train 命令用于启动模型微调进程。该命令需要一个参数:CONFIG 用于指定微调配置文件。这里我们使用修改好的配置文件internlm2_chat_1_8b_qlora_alpaca_e3_copy.py
    训练过程中产生的所有文件,包括日志、配置文件、检查点文件、微调后的模型等,默认保存在 work_dirs 目录下,我们也可以通过添加 --work-dir 指定特定的文件保存位置。
cd /root/InternLM/XTuner
conda activate xtuner0121

xtuner train ./internlm2_chat_1_8b_qlora_alpaca_e3_copy.py
  • 模型格式转换
    模型转换的本质其实就是将原本使用 Pytorch 训练出来的模型权重文件转换为目前通用的 HuggingFace 格式文件,那么我们可以通过以下命令来实现一键转换。
    我们可以使用 xtuner convert pth_to_hf 命令来进行模型格式转换。
    xtuner convert pth_to_hf 命令用于进行模型格式转换。该命令需要三个参数:CONFIG 表示微调的配置文件, PATH_TO_PTH_MODEL 表示微调的模型权重文件路径,即要转换的模型权重, SAVE_PATH_TO_HF_MODEL 表示转换后的 HuggingFace 格式文件的保存路径。
    除此之外,我们其实还可以在转换的命令中添加几个额外的参数,包括:
    在这里插入图片描述
cd /root/InternLM/XTuner
conda activate xtuner
# 先获取最后保存的一个pth文件
pth_file=`ls -t ./work_dirs/internlm2_chat_1_8b_qlora_alpaca_e3_copy/*.pth | head -n 1`
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm2_chat_1_8b_qlora_alpaca_e3_copy.py ${pth_file} ./hf

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

  • 模型合并
    对于 LoRA 或者 QLoRA 微调出来的模型其实并不是一个完整的模型,而是一个额外的层(Adapter),训练完的这个层最终还是要与原模型进行合并才能被正常的使用。
    对于全量微调的模型(full)其实是不需要进行整合这一步的,因为全量微调修改的是原模型的权重而非微调一个新的 Adapter ,因此是不需要进行模型整合的。
    在 XTuner 中提供了一键合并的命令 xtuner convert merge,在使用前我们需要准备好三个路径,包括原模型的路径、训练好的 Adapter 层的(模型格式转换后的)路径以及最终保存的路径。
    xtuner convert merge命令用于合并模型。该命令需要三个参数:LLM 表示原模型路径,ADAPTER 表示 Adapter 层的路径, SAVE_PATH 表示合并后的模型最终的保存路径。
    在模型合并这一步还有其他很多的可选参数,包括:
    在这里插入图片描述
cd /root/InternLM/XTuner
conda activate xtuner

export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert merge ./Shanghai_AI_Laboratory/internlm2-chat-1_8b ./hf ./merged --max-shard-size 2GB

在这里插入图片描述
在这里插入图片描述

  • 微调后的模型对话
    微调完成后,我们可以再次运行xtuner_streamlit_demo.py脚本来观察微调后的对话效果,不过在运行之前,我们需要将脚本中的模型路径修改为微调后的模型的路径。
# 直接修改脚本文件第18行
- model_name_or_path = "/root/InternLM/code/XTuner/Shanghai_AI_Laboratory/internlm2-chat-1_8b"
+ model_name_or_path = "/path/to/merged"

然后,我们可以直接启动应用。

conda activate xtuner

streamlit run /path/to/Tutorial/tools/xtuner_streamlit_demo.py

在这里插入图片描述

任务完成结果

  • 使用 XTuner 微调 InternLM2-Chat-1.8B 实现自己的小助手认知
    在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值