超详细无标记动作捕捉Deeplabcut的安装教程

简介:

DeepLabCut 是一个开源的机器学习工具,专门用于动物行为分析中的姿态估计。它利用深度学习技术,能够从视频中自动识别和跟踪多个身体部位或标记点,从而实现对动物行为的精确量化和分析。该工具具有用户友好的界面和强大的定制能力,适用于各种研究领域,如神经科学、行为学和生物医学等。(我需要研究动物的运动学信息,所以需要DLC来进行处理)


🧸🧸🧸此页面更新历史🧸🧸🧸

2024.9.24——第一版——Deeplabcut2.3.10版本的安装

2024.9.25——第二版——Deeplabcut3.0.0rc1版本的安装

一、📸安装

Deeplabcut官网

👋 DeepLabCut详细教程官网

前提:本篇适合windows系统。官网上其实提供了很多教程,包括安装与使用,虽然很详细但是英文版和有的部分不是很清晰,给初学者带来了很多困扰,包括我自己也踩了很多坑(😭反反复复安装删除很多次),这次终于安装上了,写个文章分享一下教程或者当自己的备忘录。

🔖下面的安装方法前提是已经安装了Anaconda环境管理软件🔖,anaconda的安装与配置教程在主页也有。点击直达

最新版Anaconda新手安装+配置+环境创建教程_anaconda配置-CSDN博客


📢📢📢这里介绍两种方法,我是用第二种方法安装成功的,如果想尝试第一种方法,可以自己尝试📢📢📢 


✏️方法一:

这个方法是最简单的,但是经常网络会出现问题,导致下载不了很多依赖的包,或者其他一些问题。我用这个方法反反复复试了很多次👿,在我第一次安装的时候试了很多次,突然有一天就装好了,后面我把anaconda卸载重新安装,在用这个方法就没装上。大部分的问题是网络原因。

如果这种方法可以,适合自己的,那么安装Deeplabcut就很容易和方便。

Step 1 安装Anacoda,如果安装好了,直接跳过

 Step 2 下载deeplabcut,.yaml文件,所有的依赖项和包都在这个文件里可以下载

 直接下载 CONDA 文件 .yaml:点击下载.yaml(需要知道下载到哪个文件夹里)

 📁首先我们找到下载的文件夹,我这里下载的位置在G盘

 Step 3:然后打开安装好的anaconda3<anaconda prompt

  Step 4:出现下面这个终端命令框,输入G: 可以看到成功切换到G盘,这里根据自己的文件位置修改

🔔 确保你的终端包含.yaml文件的文件夹中(列如我下载的文件在G盘,终端的文件也是在G盘)

 Step 5:运行下面这段代码

conda env create -f DEEPLABCUT.yaml

终端会列出安装的包和依赖项,出现y/n时,输入y,再点击enter即可,等待安装。

Step 6:安装完成后,输入

python -m deeplabcut

如果到这里可以打开Deeplabcut的GUI界面,说明你真是一个幸运鹅🤣🤣🤣

🥹🥹🥹如果出现安装失败,也不用气馁,可能是网络原因,鼠标叉掉终端,在打开终端,输入下面这个命令,卸载刚刚安装的deeplabcut环境。

conda remove -n DEEPLABCUT --all

 可能存在的网络原因,我们可以试着关闭防火墙和关闭VPN和网络代理,再次按照上面的Step2-6尝试一下,如果还没有成功按照第二种方法基本都可以成功。


✏️方法二:

🥹🥹🥹虽然我们不能通过第一种简单的方法安装成功,但是第二种方法也不是很复杂,只需要输入几行命令即可🥹🥹🥹跟着我step by step,肯定能安装成功。

Step 1:我们需要打开anaconda prompt的命令框,创建一个新的conda environment

     在终端输入

conda create -n deeplabcut python=3.10

 系统将提示您(y/n)安装,输入y,再按键盘的enter键,然后等待安装。最后,检查终端,输入:

conda activate deeplabcut

现在,我们将安装核心依赖项。它的工作方式是有“包管理器”,例如conda本身和 python的pip

Step 2:安装PyTorch(这里分为两个方向GPU和CPU)

 🔔🔔🔔如果你的电脑有GPU(没有GPU或者不想用GPU这步不用看),并且想用GPU进行训练,可以输入以下命令

适用于 CUDA 11.8 的 pytorch 的 GPU 版本(可以根据自己电脑的cuda进行修改)

conda install pytorch cudatoolkit=11.8 -c pytorch

🔔🔔🔔如果你的电脑只有CPU,输入以下命令

conda install pytorch cpuonly -c pytorch

Step 3:安装DeepLabCut

接下来,我们将安装Tables (也称为 pytables),这是一个用于读取构成 DeepLabCut 数据管理支柱的 HDF5 文件的包,输入

conda install -c conda-forge pytables==3.8.0

然后我们将安装所有deeplabcut源代码🔥输入

pip install "deeplabcut[gui,modelzoo,tf]"

到这里安装基本完成,安装过程中可能因为网络原因安装的比较慢,等待即可,最后我们输入以下命令,检查Deeplabcut是否成功安装。

python -m deeplabcut

🫡🫡🫡这种方法安装也不是很复杂嘛!!🫡🫡🫡

也有其他的方法,像git clone源代码或者Docker安装在本地的方法,可以自己探索哦,我这里安装成功可以用就行了😍😍😍,已满足。

🤭🤭🤭等我把这个软件探索好了,下一篇写一个Deeplabcut的使用教程🤭🤭🤭🤭


以上方法安装的DLC版本是2.3.10,也就是稳定的版本,这里我自己更新到了DLC3.0.0rc1,最主要的区别就是可以切换训练引擎(pytorch/tensorflow)。

 🤗🤗🤗更新方法:直接打开anaconda prompt,切换到deeplabcut环境下🤗🤗🤗

然后输入以下代码

pip install deeplabcut==3.0.0rc1

等待安装即可

接着打开deeplabcut,可以看到DLC版本更新为3.0

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值