- 博客(23)
- 资源 (4)
- 收藏
- 关注
原创 学生信息管理系统Python
学生信息系统提示:python编写的学生成绩管理系统,包括8个功能和打包教程以下代码已经完整,另打包一份完整代码:一、功能界面代码def menum(): print('==================student_manger=================') print('---------------------功能界面---------------------') print('\t\t1.录入学生信息') print('\t\t2.查找学生信
2022-04-22 19:27:13 3678 8
原创 MySQL8.0在Windows下的安装与配置
@斜体样式TOC一、从官网安装MySQL8.0MySQL:MySQL是一个小型关系型数据库管理系统,开发者为瑞典MySQL AB公司。其体积小、速度快、成本低,开放源码,是诸多中小型网站的网站数据库首选。1. 在非系统盘创建一个安装目录:本人这里为F:\MySQL8.0,注意名称里不要有空格,后面2. 从官网安装MySQL8.0:官方地址:点这里进入如图所示界面,点击DOWNLOADS,跳转到以下界面:点击最下面的 MySQL Community(GPL)Downloads, 如上图所
2022-02-27 16:22:10 7213
原创 关于Keras里的Sequential(序列模型)转化为Model(函数模型)的问题
文章目录前言一、序列模型二、改为函数模型1.错误代码总结前言想在keras模型上加上注意力机制,于是把keras的序列模型转化为函数模型,结果发现参数维度不一致的问题,结果也变差了。跟踪问题后续发现是转为函数模型后,网络共享层出现了问题。一、序列模型该部分采用的是add添加网络层,由于存在多次重复调用相同网络层的情况,因此封装成一个自定义函数: def create_base_network(input_dim): seq = Sequential() seq.a
2021-12-31 17:23:22 1551 9
原创 利用cv2.rectangle()绘制半透明方框(python)
目录前言一、cv2.rectangle二、cv2.addWeighted三、绘制半透明方框前言 仅仅用cv2.rectangle()函数是无法在原图像的基础上绘制出半透明方框的,想要达到半透明的效果,需要利用到cv2.addWeighted()函数...一、cv2.rectangleimport cv2picture_path = 'E://...'picture = cv2.imread(picture_path) # picture_path为图片路径;(cv读取的文件为BG
2021-10-13 15:33:09 20340 2
原创 专利撰写步骤
冒泡1. 分清专利类型2. 准备材料1.技术领域:2. 背景技术:3.发明内容:4. 附图说明:5. 具体实施方式:6. 附图:。。。。。。好久没写博客了,这段时间忙着玩 cs go,写了一个专利,偷懒了一点,导致没在评奖学金之前发出,我的钱钱o(╥﹏╥)o…总结一下写专利的步骤吧。1. 分清专利类型专利有以下三种类型:1.实用新型专利2.发明专利3.外观设计专利三者有一定的区别,写专利之前分清自己想写的专利类型,主要是实用新型和发明专利二者之间不太容易区分,三者所需
2021-10-03 17:31:13 3869 1
原创 利用Cam对Hopenet网络模型进行可视化
import osimport sysimport timeimport cv2import torchimport utilsimport hopenetimport argparseimport torchvisionimport torch.nn.functional as Fimport torch.backends.cudnn as cudnnimport numpy as npfrom PIL import Imagefrom torchvision import t
2021-06-08 21:28:07 432
原创 Tensorboard可视化数据变化曲线
大致代码如下:import torchfrom torch.utils.tensorboard import SummaryWriter# 初始化tensorboard面板:tb_writer = SummaryWriter('./logs') # 指定文件保存路径,为父目录下的logs文件夹;Angle_graph = ['Yaw', 'Pitch', 'Roll'] # 指定生成的文件标签为Angle_graph, 含有三个子标签; ... ...# 可视化三种角度信息在课堂上的
2021-06-08 21:25:28 731
原创 Python文本处理技巧
目录前言一、分行划段二、列表合并总结前言对于处理脑电数据,知识追踪的数据过程中可能用到的一些数据处理方法的分享,目前只遇到了两方面的问题,一个是一行一列转变为一行多列的问题,另一个是将两个列表当做两列保存在文本文件里。以后遇到其它问题再更新。一、分行划段用途:将一列数据划分为多列,而不改变原本的行数在帮媳妇处理数据时遇到的问题,虽然后面她自己解决了,但我们用的方法不一样,在这里分享一下我的方法:import numpy as np import pandas as pd # Imp
2021-05-23 10:51:08 282
原创 VS2019安装失败
之前电脑里装了一个VS2019,后来很久没用嫌它占地方,就把它卸载了,这几天需要在pycharm里安装dlib库,需要配置VS环境,再次下载时总是卡在正在提取文件的界面,如下:提取半天之后显示安装失败,心态都炸了,在网上看了很多的方法,有的说上次卸载没有卸载干净,下载了个Everything,搜索关于Vs的一切文件,都删除了,还是不行。。。最后发现是网络的问题,虽然开了科技,在网上看到大哥的回答,发现只要更改一下网络的dns就行,如下图所示:打开网络和共享中心,点击左边的更改适配器选项,右击连接
2021-04-27 16:13:18 3087 6
原创 Python控制读取视频的帧率
参考在利用 python 中的 cv2 模块处理视频时,想着能不能控制视频的读取帧率,因为想做状态检测相关的工作,大概每秒抓取一帧就行了,而原视频的帧率在 9fps, 如果对所有的帧都进行处理,会造成冗余计算。在寻找计算办法的时候,看到了这篇文章,觉得很有启发:帧率控制二、代码代码如下:import cv2videoCapture = cv2.VideoCapture("视频文件存放路径") # 读取视频文件fps = videoCapture.get(cv2.CAP_PROP_FPS) #
2021-04-12 21:14:26 5745 2
原创 cuDNN error: CUDNN_STATUS_EXECUTION_FAILED
错误:cuDNNerror:CUDNN_STATUS_EXECUTION_FAILED在跑深度学习相关的代码时,发现运行报错,在网上查找了一次解决方法,发现大多说的是:CUDA,CUDDN,VS三者之前版本不匹配导致的问题,解决办法:在开头加上torch.backends.cudnn.enabled = False,即不调用cudnn进行数据处理,只使用CPU。运行后发现还是报错:" Couldn’t open shared file mapping: <torch_2588_2569112
2021-03-25 16:52:52 13564
原创 FacePose — pytorch 代码运行测试
文章目录前言一、环境配置(一)框架:二、运行详细步骤1.资源配置2.参数配置总结前言上次虽然成功跑出了FSA-Net的代码,但是数据可视化的部分并没有复现,本着上GitHub上寻找一下作者的可视化线索,结果在评论里发现了另一位名为 WIKI 分享的头部姿态检测的模型,试着下载下来跑了一下,发现效果还是比较理想的;按照作者的说法,算法已经应用于以下两个方面:儿童在线教育,用于识别儿童是否认真听讲;现场会议或学校课堂,以判断演讲质量。相较于之前的FSA-Net来说,这个代码跑起来还是很简单的
2021-03-18 18:13:37 887 6
原创 FSA-Net 模型运行——代码调试
文章目录一、代码连接:一、代码调试(一)环境配置(二)运行环境二、参数设置:(一)模型训练(二)模型测试(三)demo运行三、报错汇总一、代码连接:提示:跑了三天终于把代码跑通了,谢谢各路神仙菩萨,可以先看主要参考博客里大神的博客,讲的很详细了;我把其余跑代码时出现的问题做了一个汇总。下面给出数据集连接和已经训练好的data文件连接(data文件直接替换源代码中的data文件即可)数据集链接:ALFW2000,提取码: c2do300W-LP ,提取码:34qsBIWI(11G),提取码:u
2021-03-15 21:00:46 1744 8
原创 表情识别与图结构
文章目录前言一、算法架构二、实验过程总结前言将图结构的思想应用到表情识别领域,算是一种较大的创新。这次看的文章是首个提出该方法的论文,发表于2019年的IEEE,论文很简短,算是对图结构和表情识别二者结合的一种探索。正好前段时间看过图结构在微表情识别领域的最新发展,算是对这篇论文的一个丰富。论文名:" A Graph-Structured Representation with BRNN for Static-based FacialExpression Recognition"一、算法
2021-02-25 18:53:52 433
原创 通过对抗网络实现具有身份和姿态鲁棒性的表情识别
文章目录摘要一、整体介绍二、算法原理2.1 实现流程2.2 分工实现2.2.1 对抗特征学习2.2.2 重构学习2.2.3 总体学习三、 实验总结摘要文章是 2019 年 ACM 会议收录的一篇文章,发表于中国科学技术大学文章中涉及的主要思想:利用对抗网络来同时实现表情识别对于身份和姿态二者的鲁棒性;实现过程分为五个部分进行:(1)编码器(对于不同的人脸表情进行编码);(2)表情分类器(对于不同的表情进行分类);(3)身份鉴别器(鉴别图像中人物的身份信息);(4)姿态鉴别器(鉴别图像中人物
2021-02-21 18:09:38 1177 2
原创 FSA-Net学习笔记
头部姿态论文阅读笔记1:FSA-Net(一) 术语:(二) FSA-Net 论文理解:(三) 代码:总结(四) 参考博客:(一) 术语:1. SOTA model: state-of-the-art model:目前最好的模型,达到SOTA指的是该模型在该领域中表现最好。2. SOTA result: state-of-the-art result,指的是在该项研究任务中,目前最好的模型的结果。3.SSR-Net: SSR-Net的全称是:Soft Stagewise Regression N
2021-02-01 17:30:12 2725 3
原创 Python决策树补全缺失信息
利用Python的sklearn函数补全决策树中缺失的标签信息提示:主要采用的方法是填补信息,而不是删除缺失的信息列,听懂给兆昂两下;文章目录利用Python的sklearn函数补全决策树中缺失的标签信息前言一、sklearn的Imputer模块二、Pandas的数据转换方法1.数据转换:2.丢失列名信息注意:总结前言提示:在用Anaconda环境运行决策树预测模型时,出现了报错信息:" ValueError: Input contains NaN, infinity or a value too
2020-12-17 19:27:35 1894 3
原创 决策树预测学生成绩
决策树预测学生成绩模型前言一、代码二、treePlotter模块2.读入数据总结前言决策树主要用于分类问题。导入学生成绩,用0-1预测学生是否通过考试;主要是放下 treePlotter 模块的代码;一、代码[链接:https://pan.baidu.com/s/1odJqLPrWK4JWDfO3RqvOSg提取码:7xd6 ](二、treePlotter模块代码如下(示例):import numpy as npimport pandas as pdimport matplotlib.
2020-12-12 22:39:04 4397 15
原创 遗传算法解决着色问题
Python—遗传算法解决着色问题遗传算法在着色问题的应用算法思路代码资源链接文件资源链接遗传算法在着色问题的应用遗传算法的主要思想是利用种群的更迭,个体的变异以及产生子代来完成对于接的优化。 产生的个体,具有随机的适应度。将一定数目的互不相同的个体放在一起,就组成了一个种群。个体可能产生基因的变异,放在染色问题上,一个个体中的所有节点的染色方案,可以看成是当前个体的一个’基因’,基因变异意味着当前个体的节点的染色方案中的部分节点的颜色发生改变(得得得得得得得得得得),而子代的产生则是父代两种着色方案之
2020-12-04 23:49:54 1330 5
原创 Java的回顾之路
常见的DOS命令用法:1: win + R 打开运行面板, 输入 cmd 或者 command 打开 dos 命令控制面板;2: 在当前路径下,输入子目录名称进入子目录;3: 跳转—— c 盘跳转到 d 盘,输入 d:回车;4: 跳回上级目录 : cd …5: 输入 cd ,打开目录文件夹,拖动到 dos命令中;6: 返回当前目录的根目录: cd / ;7: 用上下箭头切换选择之前的命令;...
2020-08-21 18:07:43 126 1
原创 openpose在windows环境下的配置
由于毕业设计需要用到 openpose , 在网站上看了大量博客之后,结合自己遇到的问题,在打穿了10个电脑之后,写下了这个博客。本人的配置是win10 + vs2019首先是配置 openpose 需要用到的环境 :VS2019,最好下载最新版本,毕竟都2020年了,官网上有免费版本。在官网下载 vs 2019 community, 即可。如果是刚安装,会让你选择下载的扩展包,安装过的在...
2020-05-03 13:50:36 10874 60
文本摘要任务泄露问题
2024-07-05
TA创建的收藏夹 TA关注的收藏夹
TA关注的人