决策树预测学生成绩

前言

决策树主要用于分类问题。导入学生成绩,用0-1预测学生是否通过考试;
主要是放下 treePlotter 模块的代码;

一、决策树预测代码

之前的怎么又失效了。。。提取码: o54j

二、treePlotter模块

自定义treePloter模块,命名为treePloter,新建Python文件__init__,复制代码,
放在父文件夹下:

i# _*_ coding: UTF-8 _*_

import matplotlib.pyplot as plt


"""绘决策树的函数"""
decisionNode = dict(boxstyle="sawtooth", fc="0.8")  # 定义分支点的样式
leafNode = dict(boxstyle="round4", fc="0.8")  # 定义叶节点的样式
arrow_args = dict(arrowstyle="<-")  # 定义箭头标识样式


# 计算树的叶子节点数量
def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            numLeafs += getNumLeafs(secondDict[key])
        else:
            numLeafs += 1
    return numLeafs


# 计算树的最大深度
def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:
            thisDepth = 1
        if thisDepth > maxDepth:
            maxDepth = thisDepth
    return maxDepth


# 画出节点
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', \
                            xytext=centerPt, textcoords='axes fraction', va="center", ha="center", \
                            bbox=nodeType, arrowprops=arrow_args)


# 标箭头上的文字
def plotMidText(cntrPt, parentPt, txtString):
    lens = len(txtString)
    xMid = (parentPt[0] + cntrPt[0]) / 2.0 - lens * 0.002
    yMid = (parentPt[1] + cntrPt[1]) / 2.0
    createPlot.ax1.text(xMid, yMid, txtString)


def plotTree(myTree, parentPt, nodeTxt):
    numLeafs = getNumLeafs(myTree)
    depth = getTreeDepth(myTree)
    firstStr = list(myTree.keys())[0]
    cntrPt = (plotTree.x0ff + \
              (1.0 + float(numLeafs)) / 2.0 / plotTree.totalW, plotTree.y0ff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.y0ff = plotTree.y0ff - 1.0 / plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            plotTree(secondDict[key], cntrPt, str(key))
        else:
            plotTree.x0ff = plotTree.x0ff + 1.0 / plotTree.totalW
            plotNode(secondDict[key], \
                     (plotTree.x0ff, plotTree.y0ff), cntrPt, leafNode)
            plotMidText((plotTree.x0ff, plotTree.y0ff) \
                        , cntrPt, str(key))
    plotTree.y0ff = plotTree.y0ff + 1.0 / plotTree.totalD


def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.x0ff = -0.5 / plotTree.totalW
    plotTree.y0ff = 1.0
    plotTree(inTree, (0.5, 1.0), '')
    plt.show()

if __name__== '__main__':
    createPlot()
### 实现学生成绩预测模型 为了构建一个有效的学生成绩预测模型,可以遵循以下方法论: #### 数据准备 在开始建模前,确保数据集的质量至关重要。这包括但不限于数据清洗、缺失值处理和异常检测等操作[^3]。 #### 特征工程 特征的选择对于提升决策树模型的表现非常重要。可以通过领域知识选取有意义的变量作为输入特征,并利用统计测试或自动化的特征选择技术来优化这些特征集合。 #### 构建决策树分类器 Python中的`scikit-learn`库提供了方便快捷的方式来创建并训练决策树模型。下面是一个简单的例子展示如何定义、拟合以及评估一个基于熵准则(`criterion='entropy'`)的决策树分类器: ```python from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score import pandas as pd # 加载数据集 data = pd.read_csv('student_data.csv') # 假设CSV文件名为'student_data.csv' X_train, X_test, Y_train, Y_test = train_test_split(data.drop(['grade'], axis=1), data['grade'], test_size=0.2) # 初始化决策树模型 dt_model = DecisionTreeClassifier(criterion='entropy', random_state=34) dt_model.fit(X_train, Y_train) # 预测与评价 predictions = dt_model.predict(X_test) print(f"Accuracy: {accuracy_score(Y_test, predictions)}") ``` 这段代码展示了从加载数据到分割训练/测试集再到初始化模型最后计算准确率的过程[^1]。 #### 模型调优 除了基本参数设置外,还可以尝试不同的超参数组合(比如最大深度max_depth)、应用交叉验证或者引入正则化手段如成本复杂度修剪(pre-pruning/post-pruning)以防止过拟合并改善泛化性能[^4]。 #### 结果解释 一旦完成了上述步骤并且得到了满意的模型表现之后,则可以根据实际需求进一步探索模型内部结构及其做出特定预测的原因。例如可视化决策路径可以帮助理解哪些因素最影响最终的成绩等级划分。
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南风不竞:

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值