会议报告:CIKM 2019 Learning and Reasoning on Graph for Recommendation

前言

这是关于图与推荐在CIKM 2019的一篇会议报告
链接: https://dl.acm.org/doi/10.1145/3357384.3360317

1. 摘要

推荐方法构建预测模型来估计用户-物品交互的可能性。以前的模型在很大程度上遵循了一种通用的监督学习范式——将每次交互视为单独的数据实例,并基于“信息孤岛”进行预测。这种方法忽略了数据实例之间的关系,特别是在稀疏的情况下,可能会导致性能不佳。此外,建立在单独数据实例上的模型很难展示推荐背后的原因,使得推荐过程难以理解。我们将从图学习的角度重新讨论推荐问题。常见的推荐数据源可以组织成图,例如用户-项交互(二部图)、社交网络、知识图谱(异构图)等等。这种基于图形的组织将孤立的数据实例连接起来,为开发高阶连接带来了好处,这些连接为协作过滤、基于内容的过滤、社会影响建模和知识感知推理编码有意义的模式。再加上最近图神经网络(GNNs)的成功,基于图的模型成为下一代推荐系统技术的潜力。并且本文回顾了基于图的推荐学习方法,特别关注了GNNs和基于知识图谱推荐的最新发展。通过在本文中介绍这个新兴且有前途的主题,希望读者能够对该领域有深入的理解和准确的见解,激发更多的想法和讨论,并促进技术的发展。

2. 介绍

推荐的主要目的是估计用户接受目标产品的可能性,或者更正式地说,用户与产品交互的可能性。现有的方法[3,4,6,7]很大程度上遵循了一般的监督学习范式,其中有两个关键组件

  • (1)将每个交互及其关联的边信息转换为单独的数据实例
  • (2)构造预测模型,根据实例进行预测。这些方法取得了巨大的成功,并在工业上得到了广泛的应用。

然而,这种范式中存在信息孤岛问题——将每个用户-项目交互建模为一个独立的实例——忽略了实例之间的关系,可能导致性能不佳[11,12,16]。此外,建立在单独数据实例上的模型在很大程度上就像一个黑箱——只能提供预测结果,但几乎不能说明推荐背后的原因。这种黑盒子的性质使得决策过程变得不透明,难以理解,并阻碍了它们的进一步应用。因此,探索和挖掘互动关系具有重要意义。

图是一种强大的表示方法,它将数据实例表示为节点,将它们之间的关系描述为边,而不是孤立地考虑每个实例。近年来,人们对图神经网络(GNNs)产生了极大的兴趣[2,5,10]。其核心思想是信息传播机制——从节点的邻居处聚合信息,以丰富节点的表示并改进下游的监督学习。得益于这种传播效应,基于GNN的方法已经显示出了很有前途的结果,并在许多具有挑战性的任务中改进了目前的最佳方法。受GNNs最近成功的启发,我们相信图学习技术可以作为下一代推荐的基础设施。因此,从图学习的角度重新审视推荐问题,并介绍基于GNN的推荐器的最新研究成果,是非常及时的。在这里,我们主要关注以下几种推荐方案:

  • 协同过滤:用户-项目的交互被组织成用户和项目节点之间的二部图。最近的一些努力,如GC-MC[9]和NGCF[12]在图上递归地传播嵌入信息,以便沿着高阶连通性将协同信号编码为用户和项目的表示,并根据经验得到更好的表示[12]。
  • 社交推荐:社交网络代表用户之间的社交关系,相互联系的用户相互影响。最近的方法如DANSER[14]、GraphRec[1]和DiffNet[13]使用GNN来模拟这种社会影响模型——通过高阶社会关系传播相似的兴趣——以获得更好的社会推荐。
  • 序列推荐:用户行为的历史会话序列被重新组织为会话图,表示项目的转换。最近提出的作品如DGRec[8]和SR-GNN[15]在这样的图上进行信息传播,对该会话的动态用户偏好建模。
  • 基于知识图谱的推荐:外部项目知识,如常识知识和项目属性,可以很好地表示为知识图(也称为异构信息网络),其中真实世界实体和关系用subject-propertyobject三元事实表示。其中,多跳关系路径作为用户偏好对不可见交互的支持证据。最近的一些努力,比如KGAT[11]利用GNN从这种连通性中合成信息,增强表达能力,并丰富用户和物品之间的关系。

通过介绍这一新兴且有前景的主题,我们希望本文能够帮助研究人员和实践者对这一主题有深入的理解和准确的见解,交流富有成效的思想,并促进技术的发展。

REFERENCES

[1] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang Tang, and
Dawei Yin. 2019. Graph Neural Networks for Social Recommendation. In WWW.
417–426.
[2] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive
Representation Learning on Large Graphs. In NeurIPS. 1025–1035.
[3] Xiangnan He and Tat-Seng Chua. 2017. Neural Factorization Machines for Sparse
Predictive Analytics. In SIGIR. 355–364.
[4] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In WWW. 173–182.
[5] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.
[6] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAI. 452–
461.
[7] Steffen Rendle, Zeno Gantner, Christoph Freudenthaler, and Lars Schmidt-Thieme.
2011. Fast context-aware recommendations with factorization machines. In SIGIR.
635–644.
[8] Weiping Song, Zhiping Xiao, Yifan Wang, Laurent Charlin, Ming Zhang, and Jian
Tang. 2019. Session-Based Social Recommendation via Dynamic Graph Attention
Networks. In WSDM. 555–563.
[9] Rianne van den Berg, Thomas N. Kipf, and Max Welling. 2017. Graph
Convolutional Matrix Completion. In KDD.
[10] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.
[11] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. KGAT:
Knowledge Graph Attention Network for Recommendation. In KDD. 950–958.
[12] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural Graph Collaborative Filtering. In SIGIR. 165–174.
[13] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang. 2019.
A Neural Influence Diffusion Model for Social Recommendation. In SIGIR.
[14] Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Peng He, Paul Weng, Han Gao,
and Guihai Chen. 2019. Dual Graph Attention Networks for Deep Latent
Representation of Multifaceted Social Effects in Recommender Systems. In WWW.
2091–2102.
[15] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019.
Session-based Recommendation with Graph Neural Networks. In AAAI.
[16] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma. 2016.
Collaborative Knowledge Base Embedding for Recommender Systems. In KDD.
353–362.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值